- Автоматизированные системы контроля
- О чем статья
- Где нужны стендовые испытания?
- Отправная точка. Как обычно обстоят дела?
- 1. Создание автоматизированных систем контроля с нуля
- 2. Использование оборудования сторонних производителей
- Как же делать автоматизированные системы контроля быстрее и лучше?
- Преимущества данного подхода
- Средств автоматического контроля
Автоматизированные системы контроля
Перед руководителем промышленного предприятия стоит большое количество задач, одна из основных – увеличение прибыли, а, следовательно, повышение производительности труда, сокращение времени выхода продукта на рынок. Достичь данных целей позволяет автоматизация на разных этапах жизненного цикла изделия.
О чем статья
В данной статье мы с Вами рассмотрим как можно относительно быстро автоматизировать один из этапов производства изделия, а именно проверку изделия, что даст Вам возможность существенно сократить издержки на данном этапе и ускорить выход продукта на рынок. Также в этой статье мы рассмотрим вопросы, касающиеся современного состояния дел в области проектирования АСК (автоматизированных систем контроля), КПА (контрольно-проверочной аппаратуры), контрольно-измерительных систем и испытательных стендов.
Особенно актуальна данная статья будет для руководителей предприятий электронной промышленности.
Автоматизация контроля и испытаний позволяет значительно снизить издержки на этапе производства
Где нужны стендовые испытания?
Основные этапы производства, в которых необходимо применение стендовых испытаний:
- научно-исследовательские эксперименты, проводимые на стадии разработки устройства;
- испытания отдельных узлов комплексной тестируемой системы, проводимые в процессе разработки и доводки;
- испытания на этапе доводки и подготовки к сертификационному тестированию;
- сертификационные и государственные испытания системы;
- серийные испытания на производстве;
- ввод в эксплуатацию;
- плановая диагностика.
Отправная точка. Как обычно обстоят дела?
Для автоматизации этапа проверки само собой требуется АСК или КПА или испытательный стенд, как его не назови, который бы мог выполнять ряд проверочных операций. Но, где его взять, если каждое тестируемое изделие — уникально?
Компании по-разному выходят из ситуации. Если предприятие решает данный вопрос своими силами, то в зависимости от внутренней структуры, задача создания АСК (автоматизированных систем контроля) возложена либо на отельное подразделение, либо на непосредственных разработчиков изделия.
В свою очередь есть разные подходы к созданию средств автоматизации: создание с нуля, либо с использованием готовых контрольно-измерительных приборов.
1. Создание автоматизированных систем контроля с нуля
Часто АСК создаются с нуля. Процесс выглядит следующим образом:
- разрабатываются электрические схемы
- конструируются печатные платы
- покупаются компоненты
- разрабатывается конструкция АСК
- изготавливается корпус
- происходит сборка изделия
Создание автоматизированных систем контроля с нуля — долгий, крайне неэффективный и затратный процесс
На это все уходит очень много времени. А если этим к тому же занимается разработчик изделия, то создание АСК отвлекает его от выполнения своей основной работы. Проще говоря, люди занимаются не своим делом. А нам же надо выпускать продукцию — быстрее и качественнее!
2. Использование оборудования сторонних производителей
Для того чтобы сократить время на разработку АСК многие организации используют готовые контрольно-измерительные приборы сторонних производителей. При этом часто готовое оборудование требует сложной адаптации к специфики задачи: изучения архитектуры системы, написания драйверов, программирования на C++, последующей отладки и другое.
Как же делать автоматизированные системы контроля быстрее и лучше?
Упростить и ускорить процесс создания АСК можно за счет использования контрольно-измерительных приборов и программного обеспечения компании National Instruments – мирового лидера в области автоматизации.
Идея заключается в том, чтобы создавать АСК, используя универсальные модули, вместо разработки своих плат с нуля. А для конфигурирования этих модулей под конкретную задачу использовать специальную среду разработки LabVIEW – среду графического программирования, которая значительно ускоряет и упрощает процесс разработки, позволяя быстро адаптировать контрольно-измерительную систему для конкретной задачи!
Оборудование National Instruments легко адаптируется под Ваши специфические задачи
National Instruments предлагает несколько платформ, на базе которых Вы можете строить автоматизированные системы контроля:
- PXI — высокопроизводительная платформа, позволяющая решать практически любые задачи по автоматизации
- CompactRIO — компактная производительная платформа для надежной работы в жестких климатических условиях
- CompactDAQ — компактная платформа для съема данных в лабораторных и полевых условиях
- USB, PCI и WiFi устройства для ПК, ноутбуков и планшетов
Преимущества данного подхода
- Не надо самим разрабатывать АСК: Вы можете сконфигурировать свою АСК для решения практически любой задачи на платформе, которая Вам максимально подходит. Доступен большой выбор модульных контрольно-измерительных приборов.
- Быстрая настройка под конкретную задачу: графическая среда программирования LabVIEW позволяет быстро написать программу для генерации сигнала, сбора и обработки данных, а также создать пользовательский интерфейс.
- Масштабируемость: если Вам в будущем понадобиться расширить возможности АСК, Вы можете легко увеличить производительность заменив или добавив новые модули.
- Универсальность: с помощью одной модульной системы можно решать разные задачи.
Таким образом, для того чтобы создать АСК надо:
- Сконфигурировать контрольно-измерительную систему.
- Заказать оборудование (поставка в течении 60 дней).
- Настроить систему — создать программу для решения именно Ваших задач на LabVIEW.
Источник
Средств автоматического контроля
Разработка новых высокопроизводительных методов и все шире внедряющаяся автоматизация технологических процессов обработки деталей машин привели к существенному снижению трудоемкости их изготовления. Производительность процессов контроля пока растет медленнее. Увеличивается количество контролеров. Контроль становится фактором, сдерживающим рост производительности труда на машиностроительных заводах. Повышение требований к качеству продукции, точности изготовления деталей машин вызывает необходимость повышения точности их измерений (контроля). Следовательно, задача роста производительности труда и качества продукции в машиностроении неразрывно связаны с повышением производительности и точности процессов контроля. Решение этих задач возможно лишь путем автоматизации контроля.
В устройствах автоматического контроля процесс получения и обработки информации об объекте контроля автоматизирован, т. е. совершается по заданной программе без участия человека. Результаты контроля используются для приведения в действие исполнительных органов автоматических систем. Внедрение автоматического контроля наряду с повышением производительности и сокращением количества контролеров приводит к устранению субъективных погрешностей, что повышает объективность, точность контроля и качество продукции.
Контроль является неотъемлемо и важной частью технологического процесса. Основное назначение технического контроля во всех разновидностях — следить за ходом технологического процесса, регулируя качество продукции. Контроль выявляет нарушения нормального хода процесса, проявляющиеся в выходе контролируемых Параметров объектов контроля за установленные границы. На основе информации, полученной по результатам контроля, производится подналадка, т. е. регулируется ход процесса.
Рабочий на токарном или шлифовальном станках периодически проверяет текущий размер детали при работе методом пробных проходов и в зависимости от результатов контроля устанавливает инструмент для получения заданного окончательного размера.
При работе по методу настроенного станка рабочий и наладчик периодически проверяют размеры обработанных на станке деталей и при необходимости вносят изменения в его настройку.
Контрольные операции, предписанные технологическим процессом, производятся персоналом отделов технического контроля в контрольных пунктах либо после выполнения данной операции (операционный контроль), либо после окончательного изготовления детали (окончательный контроль). В зависимости от стабильности технологического процесса и предъявляемых требований контроль может быть стопроцентным или выборочным,
Информация, полученная в результате контроля параметров процесса, передается для осуществления подналадки процесса через различные промежутки времени в зависимости от формы и места контроля в технологическом процессе. Промежуток времени, протекающий от момента выхода параметра детали, обрабатываемой на станке, за установленные пределы до момента наладки станка по результатам информации, полученной при контроле, назовем периодом подналадки Т:
(III.1)
где t1 — время, затраченное на транспортирование детали от станка до места контроля; t2 — время, затраченное на процесс контроля; t3 — время на передачу сигнала о необходимости подналадки от места контроля до исполнительного органа станка; t4 — время на производство подналадки.
Величина Т может изменяться в очень широких пределах. Например, при обработке деталей на токарном автомате с контролем на контрольном пункте сдвиги во времени между окончанием процесса обработки и началом процесса контроля, а также между окончанием процесса контроля и началом регулирования процесса обработки являются весьма значительными.
Повышение уровня автоматизации оборудования и контроля привело к созданию металлорежущих станков с автоматической подналадкой по результатам контроля детали сразу после прекращения обработки. В этих станках регулирование процесса обработки производится автоматически и период подналадки становится минимальным, так как t1 » 0, а t2, t3, t4 весьма малы.
В рассмотренных примерах расположение средств контроля в технологическом процессе и способ передачи информации, полученной в результате контроля и использования ее для регулирования процесса, различны.
По указанным признакам автоматические средства контроля можно разделить на средства пассивного (приемочного) и активного (управляющего) контроля.
Средства пассивного автоматического контроля производят приемку и разбраковку (рассортировку) деталей с большим сдвигом во времени после их изготовления. Они отделяют бракованные детали, не допуская их проникновения на сборку, и обеспечивают таким способом качество продукции. Средства пассивного контроля не воздействуют непосредственно на ход технологического контроля. Полученная информация используется для регулирования процесса при значительной величине периода подналадки. Пассивный контроль не предупреждает появление брака.
Средства активного автоматического контроля непосредственно связаны с ходом технологического процесса и активно в него вмешиваются, регулируя параметры обрабатываемых деталей. Они управляют движениями исполнительных органов станков по результатам контроля обрабатываемых размеров деталей в процессе, до или после обработки.
Активный контроль предупреждает появление брака. Оператор и наладчик освобождаются от непрерывного наблюдения за ходом технологического процесса, становится возможным многостаночное обслуживание. Повышается производительность труда за счет сокращения вспомогательного времени и точность обработки.
Активный автоматический контроль является прогрессивным, однако, при внедрении его возникает ряд трудностей. Подавляющее большинство станков действующего парка основано на ручном управлении и не может быть включено в систему активного контроля без существенной модернизации, которую трудно провести силами завода-потребителя.
Применение автоматов пассивного контроля экономически наиболее оправдано при необходимости рассортировки деталей на группы внутри поля допуска для селективной сборки.
Весьма рационально также встраивание контрольных автоматов в автоматические станочные линии. В этом случае контрольный автомат непосредственно воздействует на ход технологического процесса, т. е. превращается в средство активного контроля.
Средства контроля по степени автоматизации можно разделить на неавтоматические, полуавтоматические, автоматические.
Механизированные средства контроля — контрольные приспособления — относятся к классу неавтоматических. Они применяются для последовательного (одномерные) или одновременного (многомерные) контроля различных параметров качества (отклонений размеров, геометрической формы, расположения поверхностей и др.) деталей. 3агрузка, выгрузка и раскладка деталей по соответствующем ячейкам производятся контролером вручную. Информацию о результатах контроля он получает по показаниям шкальных или светосигнальных приборов.
В полуавтоматических средствах процесс контроля и сортировки осуществляется автоматически. Не автоматизирована лишь загрузка деталей.
Автоматические и полуавтоматические средства контроля представляют собой измерительные системы. Измерительной системой называют совокупность средств измерения (мер, измерительных приборов, измерительных преобразователей) и вспомогательных устройств, соединенных между собой каналами связи и предназначенных для выработки сигналов измерительной информации в форме, удобной для автоматической обработки, передачи и использования в автоматических системах управления. Измерительный прибор — это средство измерений, вырабатывающее сигналы измерительной информации в форме, доступной для непосредственного восприятия наблюдателем. Измерительным преобразователем называют средство, вырабатывающее сигналы измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки или хранения, но не поддающейся непосредственному восприятию наблюдателем.
Автоматические системы в зависимости от выполняемой ими задачи могут быть разделены на системы автоматического контроля, автоматического управления и автоматического регулирования технологических процессов. Они представляют собой сложные устройства, состоящие из различных механических, гидравлических, электрических и других звеньев. Однако все звенья, составляющие автоматическую систему, по выполняемым ими функциям могут быть разделены на типовые функциональные элементы, тогда системы — представлены в виде функциональных блок-схем (рис. III.1), характеризующих последовательность воздействий в их структурной цепи. Элемент В воспринимает измерительный сигнал от объекта контроля ОК и реагирует на изменение измеряемой величины. Воспринимающими элементами измерительных систем для контроля размеров деталей являются измерительные стержни, измерительные губки, рычаги и др.
Задающий элемент 3 служит для установки значения величины, характеризующей управляемый процесс, закона ее изменения или порядка воздействия на управляемый процесс. Задающими элементами автоматических измерительных систем являются, например, регулировочные винты неподвижных контактов преобразователей, определяющие предельные размеры контролируемой детали или заданную величину окончательного размера детали, обрабатываемой на станке, и др.
Элемент сравнения С осуществляет сравнение величин воздействия, полученных от воспринимающего и задающего элементов, и передает сигнал на преобразующий элемент.
Преобразующий элемент П (преобразователь) осуществляет преобразование воздействия (сигнала), полученного от элемента сравнения, из одного вида энергии в другой, определяет величину и характер управляющего воздействия и передает его на измерительный Из и исполнительный И элементы. Преобразующим элементом системы, например, является электрическая цепь датчика, вырабатывающая сигнал о достижении деталью предельного или заданного размера.
Измерительный элемент воспринимает преобразованные воздействия контролируемого объекта и фиксирует числовые значения изменений контролируемой величины на показывающем, регистрирующем или цифровом отсчетном устройстве.
Исполнительный элемент воздействует на рабочие органы управляемого объекта, осуществляя конечное преобразование энергии, получаемой от преобразующего элемента. Например, электромагнит преобразует электрическую энергию в механическую, перебрасывая заслонку сортировочного устройства, или переключает золотники гидравлической системы, управляющей рабочим органом станка РОС.
Автоматические средства пассивного контроля выполняют задачу автоматического контроля. Они подразделяются на контрольные автоматы, осуществляющие после ряда вспомогательных операций автоматический контроль и сортировку изделий на годные и брак, и контрольно-сортировочные автоматы, выполняющие кроме указанных функций сортировку годных изделий на две и более группы. Функциональная блок-схема контрольных и контрольно-сортировочных автоматов имеет разомкнутую цепь воздействий от контролируемого объекта (рис. III.1, а) без обратной связи. Обратной связью называют дополнительную связь, направленную от выхода к входу процесса.
Системы активного автоматического контроля в процессе обработки выполняют задачу управления процессом. Контролируется размер обрабатываемой детали и в зависимости от его значения путем передачи воздействий от исполнительного элемента на рабочий орган станка переключаются режимы, и прекращается обработка. Функциональная блок-схема системы активного контроля в процессе обработки также имеет разомкнутую цепь воздействий (рис. III.1, б), так как функции регулирования размера выполняются наладчиком. Рабочий орган станка РОС работает на основе внешних воздействии от программного устройства Пр.
Система активного контроля с автоматической подналадкой станка выполняет задачу регулирования процесса. Контролируется размер обработанной детали и в зависимости от его значения, при необходимости, путем передачи воздействий от исполнительного элемента на корректирующий блок КБ осуществляется подналадка станка. Функциональная блок-схема такой системы имеет замкнутую цепь воздействий с обратной связью и является схемой простой системы автоматического регулирования по отклонению размера (рис. III.1, в).
Выходная (регулируемая) величина х(t) воздействует на воспринимающий элемент В, который передает ее на элемент сравнения С, где она сравнивается с заданной величиной x0 и определяется величина отклонения xw(t). Последняя через преобразователь П и исполнительный элемент И передается на вход процесса, где в корректирующем блоке КБ производится сложение или вычитание величины W(t), заданной программой на входе, с величиной отклонения xw(t). Регулирующая величина у(t) (подналадочный импульс) подается на рабочий орган станка, на который действуют и возмущающие воздействия z(t).
Источник