§ 26. КОЛИЧЕСТВЕННОЕ ОПРЕДЕЛЕНИЕ «МЕТАЛЛИЧЕСКИХ ЯДОВ» В МИНЕРАЛИЗАТАХ
Для количественного определения «металлических ядов» в химико-токсикологическом анализе применяются гравиметрические, титриметрические и фотоколориметрические методы. Большинство этих методик изложено в методических указаниях, изданных Главной судебно-медицинской экспертизой Министерства здравоохранения СССР. Описание этих методик приведено в работе А. Н. Крыловой «Исследование биологического материала на «металлические яды» дробным методом» (М., Медицина, 1975).
Для количественного определения некоторых «металлических ядов» разработано по несколько методик, которые перечислены ниже.
Гравиметрический метод предложен для количественного определения бария (в виде осадка BaSO 4 ).
Титриметрические методы, предложенные для количественного определения «металлических ядов», отличаются друг от друга применяемыми для этой цели титрованными растворами. Для количественного определения соединений висмута, свинца, меди, бария, кадмия и цинка рекомендован комплексонометрический метод. Определение свинца производят с помощью иодометрического метода. Для количественного определения серебра предложен роданидометрический метод. Аргентометрический метод предложен для количественного определения мышьяка.
Большинство ионов металлов, находящихся в минерализате (или в деструктате), определяют фотоколориметрическим методом. С этой целью в качестве реактивов применяют дитизон (для определения ртути, свинца, серебра и таллия), малахитовый или бриллиантовый зеленый (для определения сурьмы и таллия), дифенилкарбазид (для определения хрома), диэтилдитиокарбаматы (для определения меди и мышьяка), тиомочевину (для определения висмута). Фотоколориметрический метод определения ионов марганца основан на переведении этих ионов в перманганат.
Визуальные колориметрические методы (методы стандартных серий) рекомендованы для количественного определения ртути и мышьяка. Ртуть определяют по интенсивности окраски суспензии Cu 2 [HgI 4 ], а мышьяк — по окраске индикаторных бумажек, пропитанных бромидом или хлоридом ртути.
Источник
Способы количественного определения металлических ядов при судебно химических исследованиях
Лекция 6. Химико – токсикологический анализ металлов
1. Общая характеристика ХТА, составление его плана
2. Методы судебной химии
3. Общая характеристика металлических ядов
4. Методы минерализации
5. Дробный метод анализа
Чаще всего перед ХТА металлов ставится вопрос о наличии в объекте исследования химического вещества, рассматриваемого как «яд». Под отравлением (интоксикацией) следует понимать структурные и функциональные изменения организма, вызванные внешними химическими факторами, называемыми ядами. Яд — это вещество, поступающее в организм извне, обладающее свойством оказывать химическое и физико-химическое воздействие и способное при определенных условиях, даже в малых дозах, вызывать отравление. Яд — понятие относительное. Одно и то же вещество может привести к смертельному отравлению, вызвать лечебный эффект или оказаться индифферентным. В судебной медицине принято ядами называть такие вещества, которые, попадая в организм извне, уже в малых количествах в силу своих физико-химических свойств вызывают расстройство здоровья, иногда заканчивающееся смертельным исходом.
Абсолютных ядов, приводящих к отравлению в любых условиях, в природе не существует. Химическое вещество становится ядом при определенных условиях:
— в зависимости от количества;
— от физико — химических свойств, например, растворимости в желудочном соке;
— от состояния организма.
Судьба различных ядов в организме неодинакова. Одни не претерпевают существенных изменений, другие — окисляются, восстанавливаются, нейтрализуются, адсорбируются и т.д. Процессы биотрансформации ядов в основном протекают в печени, желудочно-кишечном тракте, легких, почках, жировой ткани и др. Задерживаясь в организме, яд может фиксироваться белками тканей и плазмы крови. В этих случаях образующийся комплекс «яд-белок» становится частично или полностью нетоксичным, в других — белок выполняет функцию переносчика яда к пораженным структурам.
Острое отравление наступает обычно при однократном приеме токсических или летальных доз. Оно может развиться в течение нескольких минут и быстро закончиться смертельным исходом (синильная кислота, метанол). Подострое отравление, как и острое, возникает обычно от однократного приема яда, но развивается постепенно и протекает в течение одной-трех недель, что может быть связано с приемом меньших доз яда, замедленным всасыванием или выделением его из организма.
Характер и сила действия яда на организм зависит от многих условий. Нередко одно и то же ядовитое вещество в различных условиях проявляет себя по-разному.
Наиболее важными из этих условий являются: физико-химические свойства яда, общее количество введенного яда, его концентрация, темп введения, пути поступления яда в организм, характер превращения яда в организме, общее состояние организма и его особенности, обуславливающие индивидуальную чувствительность к яду.
Химическая структура ядовитых веществ является основным фактором, определяющим тот или иной характер действия яда на организм человека.
ХТА начинается с ознакомления с материалами дела и составления плана исследования, который определяется:
— данными препроводительных документов;
— наружным осмотром объектов исследования.
Для составления плана ХТА имеет значение следующее:
— установка характера объекта исследования, его консистенции и морфологического состава;
— установление наличия консервирования объекта исследования (консервирование допускается только на большие расстояния и только чистым этиловым спиртом, при этом вместе с объектом исследования должна быть направлена контрольная проба того же спирта и в тех же количествах, которые были применены для консервирования);
— определение запаха объекта исследования;
— изучение окраски объекта исследования;
— осмотр и анализ инородных включений;
— определение реакции среды.
Методы судебной химии включают:
1. изолирование ядовитых м сильнодействующих веществ из о/и;
2. очистка выделенных веществ;
3. качественное обнаружение;
4. количественное определение выделенных веществ.
Способы изолирования ядовитых и сильнодействующих веществ, в зависимости от их природы и свойств:
1. изолирование дистилляцией с водяным паром;
2. изолирование подкисленным спиртом и подкисленной водой;
3. изолирование подщелоченной водой;
4. изолирование органическими растворителями;
5. минерализация и озоление .
ОБЩАЯ ХАРАКТЕРИСТИКА ГРУППЫ
Группа веществ, изолируемых минерализацией, включает в себя так называемые «металлические яды» В настоящее время одной из актуальнейших проблем является ухудшение здоровья населения в связи с различными вредными факторами окружающей среды. Осложнение экологической обстановки приводит к увеличению суммарной токсикогенной нагрузки на человека. Одним из наиболее неблагоприятных факторов является загрязнение окружающей среды тяжелыми металлами. Важнейшими в токсикологическом отношении «металлическими ядами» являются соединения Ва , Bi , Cd , Mn , Cu , Hg , Pb , Ag , Tl , Cr , Zn , которые, попадая в организм человека, вызывают отравления. Правилами судебно-химического исследования при проведении ненаправленного анализа предусмотрено обязательное исследование на указанные элементы.
Как известно, практически все металлы естественным образом содержатся в человеческом организме. Причем содержание элементов в норме в органах человека сильно варьирует: например, содержание мышьяка в 100 г печени равно 0,01 мг, а содержание цинка может достигать 14,5 мг. Поэтому при судебно-медицинской оценке результатов судебно-химического исследования на «металлические яды» особое значение придается их количественному определению. Ввиду незначительных количеств этих элементов их называют микроэлементами. Они играют важную роль в физиологических процессах в организмах людей и животных. Негативное действие «металлических ядов» на организм человека проявляется в их выраженном нейротоксическом действии. Токсичность объясняется тем, что в организме они связываются с функциональными группами белков, аминокислот, пептидов и других жизненно важных веществ, в результате чего нарушаются нормальные функции клеток тканей. Образующиеся в организме комплексы металлов очень прочные, поэтому изолировать металлы и обнаружить их невозможно без предварительного разрушения органического вещества, с которым они связаны. Для этого применяются методы минерализации.
Минерализация — это окисление (сжигание) органического вещества (объекта) для освобождения металлов из комплексов с белками и другими соединениями. Наиболее широко распространенные методы минерализации можно разделить на 2 большие группы:
I . Частные методы (методы сухого озоления ) — минерализация путем простого сжигания или сплавления со смесью нитратов и карбонатов щелочных металлов. К числу частных методов относится и метод частичной минерализации (деструкция), служащий для изолирования ртути из биологических объектов.
Метод простого сжигания основан на нагревании органического вещества (объекта) при высокой температуре при доступе воздуха. Сухое озоление проводят в фарфоровых, платиновых или кварцевых тиглях. На исследование берут небольшие навески (1- 3 г ), температура нагревания достигает 300-400 ° С. Данный метод применяется при специальных заданиях по обнаружению катионов марганца, меди, цинка, висмута, особенно в тех случаях, когда объект либо очень эластичен, трудноразрушаем , либо его количество ограничено.
Метод имеет определенные недостатки:
1. При нагревании возможно улетучивание металлов в виде солей или в индивидуальном виде, т.к. при нагревании в условиях проведения сухого озоления не всегда удается контролировать температуру. Даже при относительно невысокой температуре улетучиваются соединения ртути и таллия, а при температуре свыше 400 °С — хлориды кадмия, свинца, серебра, цинка, марганца, мышьяка.
2. Возможно взаимодействие некоторых металлов с материалом тигля, например, цинк, свинец, серебро могут реагировать с кварцем и фарфором, а кобальт может сплавляться с платиной.
Метод сплавления с нитратами щелочных металлов в химико-токсикологическом анализе применяется чаще, чем сухое озоление . Биологический материал нагревают с расплавленными нитратами щелочных металлов. Но с чистыми нитратами окисление идет очень быстро, особенно при повышенных температурах, при этом может наблюдаться выбрасывание пробы из тигля. Поэтому, для предотвращения бурного протекания реакции при сплавлении применяют смесь нитратов с карбонатами щелочных металлов.
II . Общие методы (методы мокрой минерализаци ) применяются при общем (ненаправленном) исследовании на группу металлических ядов, пригодны для изолирования всех катионов металлов, кроме ртути. Для минерализации используют смеси кислот — окислителей (серной и азотной, серной, азотной и хлорной), а также калия хлорат и пергидроль. Под действием окислителей происходит разрушение биологического материала с образованием более простых химических соединений. При этом связи между металлами и биологическими субстратами организма (белками, аминокислотами и др.) разрушаются, образуются соли этих металлов, которые можно обнаружить в минерализате при помощи соответствующих реакций и методов.
Методы мокрой минерализации
Метод минерализации биоматериала при ХТИ с использованием в качестве окислителя концентрированной азотной кислоты сыграл большую роль в развитии ХТА. Однако разрушение биоматериала при нагревании с концентрированной HNO3 требует большой затраты времени, реагент слабо окисляет жиры, поэтому в дальнейшем в качестве окислителя использовалась концентрированная серная кислота, действующая одновременно и как дегидратирующий агент. Но т.к. и этот процесс был не менее продолжительным по времени, а также в процессе минерализации образовывались неразлагающиеся обуглившиеся остатки, стали применять смесь концентрированных серной и азотной кислот.
Метод минерализации смесью концентрированных серной,
азотной кислот и воды (1:1:1)
Процесс разрушения биологического объекта протекает в 2 стадии:
1. Стадия деструкции, на которой происходит разрушение биологических субстратов организма (белков, жиров, углеводов) на составные части: белки разрушаются до аминокислот, углеводы (полисахариды) до ди — и моносахаридов, жиры до глицерина и жирных кислот. Менее всего подвержены разрушению на первой стадии жиры. На первой стадии нагревание не должно быть сильным, чтобы избежать подгорания объекта или сильного пенообразования и выброса частиц объекта из колбы. Поэтому, в начале процесса колбу Къельдаля закрепляют над плиткой на расстоянии 1- 2 см . Температура не должна превышать 110°С. Эта стадия непродолжительна по времени, длится от 15 до 40 минут. По окончании деструкции получается прозрачная желтовато-бурая жидкость, иногда с пленкой жира, т.к. на этой стадии все элементы объекта разрушены, кроме жиров.
На стадии деструкции концентрированная H2SO4 выполняет роль водоотнимающего средства, что приводит к нарушению структуры клеток и тканей, деформирует их. При этом она способствует повышению температуры кипения смеси и тем самым повышает окислительное действие концентрированной HNO3. В процессе окисления биоматериала часть азотной кислоты разлагается до азотистой кислоты и оксидов азота, которые являются катализаторами окисления. Под их влиянием и с повышением температуры азотная кислота проявляет себя как сильный окислитель.
2. Стадия глубокого жидкофазного окисления. Колбу Къельдаля опускают на плитку и усиливают нагревание. На этой стадии происходит окончательное разрушение органических веществ. Полностью разрушаются и жиры, которые на первой стадии почти не пострадали под действием азотной кислоты. В процессе окисления необходимо по каплям постоянно добавлять в колбу разведенную азотную кислоту из капельной воронки, но при этом скорость добавления реактива должна быть такова, чтобы бурые пары окислов азота, образующиеся при минерализации, не выходили из колбы. Эта стадия длится 3-4 часа и считается законченной тогда, когда:
— начинает выделяться белый туман (пары SО2);
— жидкость остается бесцветной;
— минерализат не темнеет в течение 30 минут без добавления HNO3.
Роль окислителя на этой стадии играет концентрированная серная кислота, которая разлагается с выделением оксида серы (IV) и активного кислорода.
Методика изолирования металлических ядов из биологического материала общим методом минерализации
100 г биообъекта в колбе Къельдаля заливают 75 мл окислительной смеси (кислоты серной концентрированной, кислоты азотной концентрированной, воды дистиллированной в соотношении 1:1:1). Колбу закрепляют в штативе вертикально на расстоянии 1- 2 см от асбестовой сетки. Над колбой помещают капельную воронку с разбавленной азотной кислотой (1:1). Колбу осторожно взгревают на плитке, добавляя при необходимости (потемнение жидкости) разбавленную азотную кислоту (1:1) по каплям до просветления жидкости. Концом минерализации считается момент, когда в колбе остается 15-20 мл бесцветной или окрашенной жидкости, которая не темнеет в течение 30 минут при постоянном нагревании, без добавления кислоты азотной. Охлажденный минерализат осторожно выливают в химический стакан, содержащий 30 мл дистиллированной воды, колбу Къельдаля ополаскивают два раза дистиллированной водой по 10мл и присоединяют промывные воды к разбавленному минерализату . Разбавление минерализата способствует затем более легкому протеканию процесса денитрации.
В маленькой фарфоровой чашке в 2-3 каплях концентрированной кислоты серной растворяют 2-3 кристалла дифениламина и к полученному бесцветному раствору прибавляет одну каплю разбавленного минерализата . В случае появления сине-голубого окрашивания проводят денитрацию раствора. В случае отсутствия голубого окрашивания в результате реакции с дифениламином жидкость кипятят до исчезновения запаха формалина, охлаждают, количественно переносят в мерную колбу на 200 мл и доводят водой очищенной до метки. Жидкость из мерной колбы переносят в чистую сухую склянку и используют для обнаружения катионов (100 мл) и количественного определения (100 мл). Если при разбавлении минерализата водой выпадает осадок, то независимо от того, проводилась денитрация или нет, жидкость в стакане нагревают до кипения, кипятят 10 минут и оставляют стоять на сутки для получения более плотного осадка. На второй день белый кристаллический осадок отфильтровывают через фильтровальную бумагу. В осадке после проведения минерализации могут находиться нерастворимые в воде сульфаты бария, свинца и кальция. Химико-токсикологический интерес представляют только барий и свинец, которые необходимо разделить до обнаружения. Для этого осадок отфильтровывают через плотный фильтр, промывают 2 – 3 раза водой очищенной и присоединяют промывные воды к фильтрату, доводя его до метки в мерной колбе. Осадок на фильтре 2 раза промывают водой, подкисленной 1 % раствором кислоты серной. Промывные воды отбрасывают. Затем осадок на фильтре многократно обрабатывают 5 мл горячего насыщенного раствора аммония ацетата, подкисленного уксусной кислотой (каждый раз нагревая фильтрат).
Этот, второй фильтрат, исследуют на ионы свинца, а осадок на фильтре – на ионы бария.
ДРОБНЫЙ МЕТОД АНАЛИЗА «МЕТАЛЛИЧЕСКИХ ЯДОВ»
Дробный метод предусматривает определение одних ионов металлов в отдельных небольших порциях исследуемого раствора в присутствии других без их предварительного разделения на группы.
Обнаружение искомых ионов дробным методом проводится в 2 этапа: вначале устраняется влияние мешающих ионов с помощью соответствующих приемов и реактивов, а затем, на втором этапе — прибавляют реактив, дающий какой-либо аналитический сигнал (окраску, осадок и др.) с открываемым ионом.
Дробный метод анализа особенно удобен в случаях, когда задача эксперта ограничена заданием провести исследование только на определенные ионы или исключить тот или иной ион. Таким образом, дробный метод вполне удобен и экономичен, как нельзя лучше подходит для решения практических задач судебно-химической экспертизы.
Специфические особенности судебно-химического анализа на металлические яды:
1. Необходимость выделения из большого количества биологического объекта малых количеств (мг-мкг) веществ, которые могли послужить причиной отравления.
2. Необходимость исследования на сравнительно большую группу ядов. 3. Специфический характер объектов исследования связан с тем, что ими чаще всего являются внутренние органы трупа, которые могут содержать в качестве естественных почти все химические элементы, известные как «металлические яды» (за исключением Ba , Bi , Sb , Tl ). Поэтому всегда встает вопрос о количественном определении. Данные количественного анализа позволяют судебно-медицинским экспертам решать вопрос, являются ли найденные металлы введенными в организм или естественно содержащимися.
Источник