Информатика
Именная карта банка для детей
с крутым дизайном, +200 бонусов
Закажи свою собственную карту банка и получи бонусы
План урока:
Примеры кодирования информации:
- трансляция письменных сообщений с использованием русских букв (АБВГД…ЭЮЯ);
- запись чисел цифрами (0123456789);
- использование языка жестов при общении глухонемых людей
Другими словами, переход сообщения из одной формы ее в другую, согласно определенным правилам, и выражает в чем суть кодирования информации.
Информация проходит кодирование в целях:
- упрощения сбора исходных данных;
- сокращения объема занимаемой памяти информационными сообщениями;
- удобства хранения материалов;
- эффективной обработки и обмена информацией;
- сокрытия необходимых сведений.
История кодирования информации насчитывает сотни веков. Издавна люди использовали криптограммы (зашифрованные сообщения).
В 19 веке с изобретением телеграфа С. Морзе был придуман и принципиально новый способ шифрования. Телеграфное сообщение передавалось по проводам последовательностью коротких и долгих сигналов (точка и тире).
Вслед за ним Ж. Бодо создал основополагающий в истории современной информатики метод бинарного кодирования информации, который заключается в применении всего двух различающихся электрических сигналов. Кодирование информации в компьютере также подразумевает использование двух чисел.
Разработанная в 1948г. К. Шенноном «Теория информации и кодирования» стала основополагающей в современном кодировании данных.
Кодирование информации в информатике, одна из базовых тем. Понимание для чего нужна процедура кодирования передаваемой информации, каким образом она осуществляется, поможет в изучении принципов работы компьютера.
Способы кодировки
Проанализируем разнообразные виды информации и особенности ее кодирования.
По принципу представления все информационные сведения можно классифицировать на следующие группы:
- графическая;
- аудиоинформация (звуковая);
- символьная (текстовая);
- числовая;
- видеоинформация.
Способы кодирования информации обусловлены поставленными целями, а также имеющимися возможностями,методами ее дальнейшей обработки и сохранения. Одинаковые сообщения могут отображаться в виде картинок и условных знаков (графический способ), чисел (числовой способ) или символов (символьный способ).
Соответственно происходит и классификация информации по способу кодирования:
- символьные сообщения включают знаки дорожного движения, сигналы светофора и т.д.;
- текстовые данные – это книги, нотные записи, различные документы;
- всевозможные изображения (фотографии, схемы, рисунки) представляют все многообразие графической информации.
Чтобы расшифровать сообщение, отображаемое в выбранной системе кодирования информации, необходимо осуществить декодирование – процесс восстановления до исходного материала. Для успешного осуществления расшифровки необходимо знать вид кода и методы шифрования.
Самыми распространенными видами кодировок информации являются следующие:
- преобразование текста;
- графическая кодировка;
- кодирование числовых данных;
- перевод звука в бинарную последовательность чисел;
- видеокодирование.
Различают такие методы кодирования информации как:
- метод замены (подстановки) – знаки первоначального сообщения заменяются на соответствующие символы выбранного кодового алгоритма;
- метод перестановки – символы оригинального текста меняются местами по определенной схеме;
- метод гаммирования – к исходным обозначениям добавляется случайная последовательность других знаков.
Двоичный код
Самый широко используемый метод кодирования информации – двоичное кодирование. Кодирование данных двоичным кодом применяется во всех современных технологиях.
Двоичный (бинарный) код — последовательность нолей и единиц. Это универсальный способ отображения любых информационных сведений (текстовых сообщений, картинок, звуковых и видеоматериалов). Сведения, закодированные в бинарном коде, очень удобно хранить, обрабатывать и передавать с одного электронного устройства на другое, в чем и заключается преимущества использования двоичного кодирования информации.
Двоичное кодирование информации применяется для различных данных:
- двоичное кодирование текстовой информации заключается в присвоении буквенным, цифровым и другим обозначениям определенного кода. Он записывается в компьютерной памяти цепочкой из нулей и единиц. Порядок кодирования алфавита в двоичный код с помощью стандарта ASCII является наглядным примером;
- вид используемой графики влияет на то, каким образом производится двоичное кодирование графической информации;
- двоичное кодирование звуковой информации происходит после дискретизации звуковой волны и присвоения каждому компоненту соответствующего бинарной цепочки чисел;
- кодирование двоичным кодом видеоматериалов сочетает принципы работы со звуком и растровыми изображениями.
Обработка графических изображений
Кодирование текстовой, звуковой и графической информации осуществляется в целях ее качественного обмена, редактирования и хранения. Кодировка информационных сообщений различного типа обладает своими отличительными чертами, но, в целом, она сводится к преобразованию их в двоичном виде.
Рисунки, иллюстрации в книгах, схемы, чертежи и т.п. – примеры графических сообщений. Современные люди для работы с графическими данными все чаще применяют компьютерные технологии.
Суть кодирования графической и звуковой информации заключается в преобразовании ее из аналогового вида в цифровой.
Кодирование графической информации – это процедура присвоения каждому компоненту изображения определенного кодового значения.
Способы кодирования графической информации подчиняются методам представления изображений (растрового или векторного):
- Принцип кодирования графической информации растровым способом заключается в присвоении бинарного шифра пикселям (точкам), формирующим изображение. Код содержит сведения о цветовых оттенках каждой точки. Примером служат снимки, сделанные на цифровом фотоаппарате.
- Векторная кодировка осуществляется благодаря использованию математических функций. Компонентам векторных изображений (точкам, прямым и другим геометрическим фигурам) присваивается двоичная последовательность, определяющая разнообразные параметры. Такая графика зачастую применяется в типографии.
Источник
Многим станет интересно: «В чем суть кодирования графической информации, представленной в виде 3D-изображений?» Дело в том, что работа с трехмерными данными сочетает способы растровой и векторной кодировки.
Кодирование и обработка графической информации различного формата имеет как свои преимущества, так и недостатки.
Метод координат
Любые данные можно передать с помощью двоичных чисел, в том числе и графические изображение, представляющие собой совокупность точек. Чтобы установить соответствие чисел и точек в бинарном коде, используют метод координат.
Метод координат на плоскости основан на изучении свойств точки в системе координат с горизонтальной осью Ox и вертикальной осью Oy. Точка будет иметь 2 координаты.
Если через начало координат проходит 3 взаимно перпендикулярные оси X, Y и Z, то используется метод координат в пространстве. Положение точки в таком случае определяется тремя координатами.
Система координат в пространстве
Перевод чисел в бинарный код
Числовой способ кодирования информации, т.е. переход информационных данных в бинарную последовательность чисел широко распространен в современной компьютерной технике. Любая числовую, символьную, графическую, аудио- и видеоинформацию можно закодировать двоичными числами. Рассмотрим подробнее кодирование числовой информации.
Привычная человеку система счисления (основанная на цифрах от 0 до 9), которой мы активно пользуемся, появилась несколько сотен тысяч лет назад. Работа всей вычислительной техники организована на бинарной системе счисления. Алфавитом у нее минимальный – 0 и 1. Кодировка чисел совершается путем перехода из десятичной в двоичную систему счисления и выполнении вычислений непосредственно с бинарными числами.
Кодирование и обработка числовой информации обусловлено желаемым результатом работы с цифрами. Так, если число вводится в рамках текстового файла, то оно будет иметь код символа, взятого из используемого стандарта. Для математических вычислений числовые данные преобразуются совершенно другим способом.
Принципы кодирования числовой информации, представленной в виде целых или дробных чисел (положительных, отрицательных или равных 0) отличаются по своей сути. Самый простой способ перевести целое число из десятичной в двоичную систему счисления заключается в следующем:
- число нужно разделить на 2;
- если частное больше 1, то необходимо продолжить деление до того момента, пока результат будет равен 0 или 1;
- записать результат последней операции и остатки от деления в обратной последовательности;
- полученное число и будет являться искомым кодовым значением.
Одна из важнейших частей компьютерной работы – кодирование символьной информации. Все многообразие цифр, русских и латинских букв, знаков препинания, математических знаков и отдельных специальных обозначений относятся к символам. Cимвольный способ кодирования состоит в присвоении определенному знаку установленного шифра.
Рассмотрим подробнее самые распространенные стандарты ASCII и Unicode – то, что применяется для кодирования символьной информации во всем мире.
Фрагмент таблицы ASCII
Первоначально было установлено, что для любого знака отводится в памяти компьютера 8 бит (1 бит – это либо «0», либо «1») бинарной последовательности. Первая таблица кодировки ASCII (переводится как «американский кодовый стандарт обмена сообщениями») содержала 256 символов. Ограниченная численность закодированных знаков, затрудняющая межнациональный обмен данными, привела к необходимости создания стандарта Unicode, основанного на ASCII. Эта международная система кодировки содержит 65536 символов. Закодировать огромное количество всевозможных обозначений стало возможным благодаря использованию 16-битного символьного кодирования.
Кодирование символьной и числовой информации принципиально отличается. Для ввода-вывода цифр на монитор или использовании их в текстовом файле происходит преобразование их согласно системе кодировки. В процессе арифметических действий число имеет совершенно другое бинарное значение, потому что оно переходит в двоичную систему счисления, где и совершаются все вычислительные действия.
Выбирать способ кодирования информации – графический, числовой или символьный необходимо отталкиваясь от цели кодировки. Например, число «21» можно ввести в компьютерную память цифрами или буквами «двадцать один», слово «ЗИМА» можно передать русскими буквами «зима» или латинскими «ZIMA», штрих-код товара передается изображением и цифрами.
Преобразование звука
Компьютерные технологии успешно внедряются в различные сферы деятельности, включая кодирование и обработку звуковой информации. С физической точки зрения, звук – это аналоговый сплошной сигнал. Процесс его перевода в ряд электрических импульсов называется кодированием звуковой информации.
Задачи, которые необходимо решить для успешной оцифровки сигнала:
- дискретизировать (разделить аудиоданные на элементарные участки путем измерения колебаний воздуха через одинаковые интервалы времени);
- оцифровать (присвоить каждому элементу числовой код).
Преобразование звука: а) аналоговый сигнал; б)дискретный сигнал.
Различают следующие методы кодирования звуковой информации:
- Метод FM. Суть его сводится к разделению звука аналого-цифровыми преобразователями (АЦП) на одинаковые простейшие элементы, которые в дальнейшем кодируются бинарным кодом. Несовершенство метода FM проявляется в низком качестве звукозаписи из-за потери некоторого объема исходного звукового сообщения.
- Метод Wave-Table (таблично-волновой) позволяет получить высококачественный продукт, поскольку разработанные таблицы сэмплов (образцов «живых» звуков) позволяют выразить бинарными числами разнообразные параметры поступающего сигнала.
Обработка текста
Текст – осмысленный порядок знаков. С использованием компьютера кодирование и обработка текстовой информации (набор, редактирование, обмен и сохранение письменного текста) значительно упростилось.
Кодирование текстовой информации – присвоение любому символу текста кода из кодировочной системы. Различают следующие стандарты кодировки:
- ASCII – первая международная система кодировки, содержащая коды на 256 знаков.
- Unicode – расширенный стандарт ASCII, превышающий ее размером в 256 раз.
- КОИ-8, СР1251, СР866, ISO – русские таблицы кодировки букв. При этом следует понимать, что документ, закодированный одним стандартом, не будет читаться в другом.
В задачах на кодирование текстовой информации часто встречаются следующие понятия:
- мощность алфавита;
- единицы измерения памяти (биты и байты).
Например, мощность алфавита ASCII составляет 256 символов. При этом один знак занимает 8 бит (или 1 байт) памяти, а Unicode – 35536 символов и 16 бит (или 2 байта) соответственно.
Источник
Способы кодирования сообщения называются ответ
Представление информации происходит в различных формах в процессе восприятия окружающей среды живыми организмами и человеком, в процессах обмена информацией между человеком и человеком, человеком и компьютером, компьютером и компьютером и так далее. Информация, поступает в виде условных знаков или сигналов самой разной физической природы.
Это свет, звук, запах, касания; это слова, значки, символы, жесты и движения.
Для того чтобы произошла передача информации, мы должны не только принять сигнал от кого-то, но и расшифровать его.
Так, услышав звонок будильника, человек понимает, что пришло время просыпаться;
телефонный звонок — кому-то нужно с нами поговорить;
школьный звонок сообщает учащимся о долгожданной перемене.
Для правильного понятия разных сигналов требуется разработка кода или кодирование.
Код — это система условных знаков для представления информации.
Кодирование — это перевод информации в удобную для передачи, обработки или хранения форму с помощью некоторого кода.
Средством кодирования служит таблица соответствия знаковых систем, которая устанавливает взаимно однозначное соответствие между знаками или группами знаков двух различных знаковых систем.
В процессе обмена информацией часто приходится производить операции кодирования и декодирования информации. При вводе знака алфавита в компьютер путем нажатия соответствующей клавиши на клавиатуре происходит кодирование знака, то есть преобразование его в компьютерный код. При выводе знака на экран монитора или принтер происходит обратный процесс — декодирование, когда из компьютерного кода знак преобразуется в его графическое изображение.
Обратное преобразование называется декодированием.
Декодирование — это процесс восстановления содержания закодированной информации.
Можно рассмотреть в качестве примера кодирования соответствие цифрового и штрихового кодов товара. Такие коды имеются на каждом товаре и позволяют полностью идентифицировать товар (страну и фирму производителя, тип товара и др.).
Знакам цифрового кода (цифрам) соответствуют группы знаков штрихового кода (узкие и широкие штрихи, а также размеры промежутков между ними) — рис. Для человека удобен цифровой код, а для автоматизированного учета -штриховой код, который считывается с помощью узкого светового луча и подвергается последующей обработке в компьютерных бухгалтерских системах учета.
Существует три основных способа кодирования информации:
●Числовой способ — с помощью чисел.
●Символьный способ — информация кодируется с помощью символов того же алфавита, что и исходящий текст.
●Графический способ — информация кодируется с помощью рисунков или значков.
Существует равномерное и неравномерное кодирование. При равномерном кодировании сообщение декодируется однозначно. При неравномерном кодировании для однозначного декодирования сообщения нужно, чтобы выполнялось прямое и обратное условие Фано(прямое: никакой код не должен быть началом другого кода, обратное: никакой код не должен быть концом другого кода)
Понимать, что мы можем закодировать сообщение, даже если условие Фано не выполняется, но возможно не сможем его однозначно декодировать.
Однозначно декодировать –получить один единственный точный вариант.
Двоичное кодирование информации в компьютере.
В компьютере для представления информации используется двоичное кодирование, так как удалось создать надежно работающие технические устройства, которые могут со стопроцентной надежностью сохранять и распознавать не более двух различных состояний (цифр):
· электромагнитные реле (замкнуто/разомкнуто), широко использовались в конструкциях первых ЭВМ;
· участок поверхности магнитного носителя информации (намагничен/размагничен);
· участок поверхности лазерного диска (отражает/не отражает);
· триггер, может устойчиво находиться в одном из двух состояний, широко используется в оперативной памяти компьютера.
Все виды информации в компьютере кодируются на машинном языке, в виде логических последовательностей нулей и единиц —
Цифры двоичного кода можно рассматривать как два равновероятных состояния (события). При записи двоичной цифры реализуется выбор одного из двух возможных состояний (одной из двух цифр) и, следовательно, она несет количество информации, равное 1 биту.Даже сама единица измерения количества информации бит (bit) получила свое название от английского словосочетания BinarydigiT (двоичная цифра).Важно, что каждая цифра машинного двоичного кода несет информацию в 1 бит. Таким образом, две цифры несут информацию в 2 бита,три цифры — в 3 бита и так далее. Количество информации в битах равно количеству цифр двоичного машинного кода.
Кодирование текстовой информации.
Текстовую информацию кодируют двоичным кодом через обозначение каждого символа алфавита определенным целым числом. С помощью восьми двоичных разрядов возможно закодировать 256 различных символов. Данного количества символов достаточно для выражения всех символов английского и русского алфавитов.
Для английского языка — Институт стандартизации США выработал и ввел в обращение систему кодирования ASCII (AmericanStandardCodeforInformationInterchange – стандартный код информационного обмена США).
Для кодировки русского алфавита были разработаны несколько вариантов кодировок:
1) Windows-1251 – введена компанией Microsoft — в Российской Федерации она нашла широкое распространение.
2) КОИ-8 (Код Обмена Информацией, восьмизначный) – другая популярная кодировка российского алфавита, распространенная в компьютерных сетях.
3) ISO (InternationalStandardOrganization – Международный институт стандартизации) – международный стандарт кодирования символов русского языка. На практике эта кодировка используется редко.
Ограниченный набор кодов (256) создает трудности для разработчиков единой системы кодирования текстовой информации. Вследствие этого было предложено кодировать символы не 8-разрядными двоичными числами, а числами с большим разрядом, что вызвало расширение диапазона возможных значений кодов. Система 16-разрядного кодирования символов называется универсальной – UNICODE.
Кодирование графической информации.
Существует несколько способов кодирования графической информации.
поэтому способ растрового кодирования базируется на использовании двоичного кода представления графических данных. Общеизвестным стандартом считается приведение черно-белых иллюстраций в форме комбинации точек с 256 градациями серого цвета, т. е. для кодирования яркости любой точки необходимы 8-разрядные двоичные числа.
В основу кодирования цветных графических изображений положен принцип разложения произвольного цвета на основные составляющие, в качестве которых применяются три основных цвета: красный (Red), зеленый (Green) и синий (Blue). На практике принимается, что любой цвет, который воспринимает человеческий глаз, можно получить с помощью механической комбинации этих трех цветов. Такая система кодирования называется RGB. При применении 24 двоичных разрядов для кодирования цветной графики такой режим носит название полноцветного (TrueColor).
Для любого из основных цветов дополнительным будет являться цвет, который образован суммой пары остальных основных цветов. Соответственно среди дополнительных цветов можно выделить голубой (Cyan), пурпурный (Magenta) и желтый (Yellow). Принцип разложения произвольного цвета на составляющие компоненты используется не только для основных цветов, но и для дополнительных. Этот метод кодирования цвета применяется в полиграфии, но там используется еще и четвертая краска – черная (Black), поэтому эта система кодирования обозначается четырьмя буквами – CMYK. Для представления цветной графики в этой системе применяется 32 двоичных разряда. Данный режим также носит название полноцветного.
Кодирование звуковой информации.
В настоящий момент не существует единой стандартной системы кодирования звуковой информации, так как приемы и методы работы со звуковой информацией начали развиваться по сравнению с методами работы с другими видами информации самыми последними. Поэтому множество различных компаний, которые работают в области кодирования информации, создали свои собственные корпоративные стандарты для звуковой информации. Но среди этих корпоративных стандартов выделяются два основных направления.
В основе метода FM (FrequencyModulation) положено утверждение о том, что теоретически любой сложный звук может быть представлен в виде разложения на последовательность простейших гармонических сигналов разных частот. Каждый из этих гармонических сигналов представляет собой правильную синусоиду и поэтому может быть описан числовыми параметрами или закодирован. Звуковые сигналы образуют непрерывный спектр. Обратное преобразование, которое необходимо для воспроизведения звука, закодированного числовым кодом, производится с помощью цифроаналоговых преобразователей (ЦАП). Из-за таких преобразований звуковых сигналов возникают потери информации, которые связаны с методом кодирования, поэтому качество звукозаписи с помощью метода FM обычно получается недостаточно удовлетворительным. Этот метод широко использовался в те годы, когда ресурсы средств вычислительной техники были явно недостаточны.
Основная идея метода таблично-волнового синтеза (Wave-Table) состоит в том, что в заранее подготовленных таблицах находятся образцы звуков для множества различных музыкальных инструментов. Данные звуковые образцы носят название сэмплов. Числовые коды, которые заложены в сэмпле, выражают такие его характеристики, как тип инструмента, номер его модели, высоту тона и тд. Поскольку для образцов применяются реальные звуки, то качество закодированной звуковой информации получается очень высоким и приближается к звучанию реальных музыкальных инструментов, что в большей степени соответствует нынешнему уровню развития современной компьютерной техники.
Множество кодов очень прочно вошло в нашу жизнь.
●числовая информация кодируется арабскими, римскими цифрами и др.
●для общения и письма мы используем код — русский язык, в Китае — китайский и т.д.
●с помощью нотных знаков кодируется любое музыкальное произведение, а на экране проигрывателя вы можете увидеть громкий или тихий звук, закодированный с помощью графика.
●часто бывает так, что информацию надо сжать и представить в краткой, но понятной форме. Тогда применяют пиктограммы, например, на двери магазина, на столбах в парке, на дороге.
Для передачи информации, людьми были придуманы специальные коды, к ним относятся:
Источник