Способы измерения величины прибор

Тема: Электроизмерительные приборы и измерения электрических величин

Тема: ЭЛЕКТРОИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ И ИЗМЕРЕНИЯ ЭЛЕКТРИЧЕСКИХ ВЕЛИЧИН

1. Общие сведения об электроизмерительных приборах

Электроизмерительные приборы предназначены для измерения различных величин и параметров электрической цепи: напряжения, силы тока, мощности, частоты, сопротивления, индуктивности, емкости и других.

На схемах электроизмерительные приборы изображаются условными графическими обозначениями в соответствии с ГОСТ 2.729-68. На рис.1.1 приведены общие обозначения показывающих и регистрирующих приборов.

Рис. 1.1 Условные графические обозначения электроизмерительных приборов.

Для указания назначения электроизмерительного прибора в его общее обозначение вписывают конкретизирующее условное обозначение, установленное в стандартах, или буквенное обозначение единиц измерения прибора согласно ГОСТ в соответствии с табл.1.1.

A

Cos

M

2. Электромеханические измерительные приборы

По принципу действия электромеханические приборы подразделяются на приборы магнитоэлектрической, электромагнитной, ферродинамической, индукционной, электростатической систем. Условные обозначения систем приведены в табл. 1.2. Наибольшее распространение получили приборы первых трех типов: магнитоэлектрические, электромагнитные, электродинамические.

Род измеряемого тока

Высокая точность, равномерность шкалы

Неустойчив к перегрузкам

Простота устройства, к перегрузкам устойчив

Низкая точность, чувствителен к помехам

чувствителен к помехам

Высокая надежность, к перегрузкам устойчив

3. Области применения электромеханических приборов

Магнитоэлектрические приборы: щитовые и лабораторные амперметры и вольтметры; нулевые индикаторы при измерениях в мостовых и компенсационных цепях.

В промышленных установках переменного тока низкой частоты большинство амперметров и вольтметров — приборы электромагнитной системы. Лабораторные приборы класса 0,5 и точнее могут изготовляться для измерения постоянного и переменного токов и напряжения.

Электродинамические механизмы используются в лабораторных и образцовых, приборах для измерения постоянных и переменных токов, напряжений и мощностей.

Индукционные приборы на базе индукционных механизмов используют главным образом в качестве одно — и трехфазных счетчиков энергии переменного тока. По точности счетчики подразделяются на классы 1,0; 2,0; 2,5. Счетчик СО (счетчик однофазный) используют для учета активной энергии (ватт-часов) в однофазных цепях. Для измерения активной энергии в трехфазных цепях применяют двухэлементные индуктивные счетчики, счетный механизм которых учитывает киловатт-часы. Для учета реактивной энергии служат специальные индуктивные счетчики, имеющие некоторые изменения в устройстве обмоток или в схеме включения.

Активные и реактивные счетчики устанавливают на всех предприятиях для расчета с энергоснабжающими организациями за используемую электроэнергию.

Принцип выбора измерительных приборов

1.Определяют расчетом цепи максимальные значения тока, напряжения и мощности в цепи. Часто значения измеряемых величин известны заранее, например, напряжение сети или аккумуляторной батареи.

2. В зависимости от рода измеряемой величины, постоянного или переменного тока, выбирают систему прибора. Для технических измерений постоянного и переменного тока выбирают соответственно магнитоэлектрическую и электромагнитную системы. При лабораторных и точных измерениях для определения постоянных токов и напряжений применяют магнитоэлектрическую систему, а для переменного тока и напряжения — электродинамическую систему.

3. Выбирают предел измерения прибора таким образом, чтобы
измеряемая величина находилась в последней, третьей части шкалы
прибора.

Читайте также:  100 способ избавиться от клопов

4. В зависимости от требуемой точности измерения выбирают класс
точности прибора.

4. Способы включения приборов в цепь

Амперметры включают в цепь последовательно с нагрузкой, вольтметры — параллельно, ваттметры и счетчики, как имеющие две обмотки (токовую и напряжения), включают последовательно – параллельно (Рис. 1.2.).

Рис. 1.2. Схемы включения электроизмерительных приборов в электрическую цепь.

Для расширения пределов измерения приборов применяют: в цепи постоянного тока для амперметров — шунты, при этом на шкале амперметра обязательно указывается тип применяемого шунта; для вольтметров — добавочные резисторы (Рис. 1.3. а); в цепи переменного тока для амперметров — трансформаторы тока (ТА), для вольтметров — трансформаторы напряжения (ТV) (рис. 1.3. б).

Рис. 1.3. Способы расширения пределов измерения приборов.

Цена деления многопредельных амперметров, вольтметров, ваттметров определяется по формуле:

где ih, uh — пределы, на которые установлены переключатели тока и напряжения у многопредельных приборов, или номинальные пределы измерений у однопредельных приборов; N — число делений шкалы прибора. Измеряемая величина определяется по формулам:

I = nCI, A; U = nCu, B; P = n-Cw, Bт,

где n — число делений, показываемое стрелкой прибора при измерении.

5. Особенности измерения цифровыми электронными приборами

Цифровые электроизмерительные приборы бывают для измерения как одной величины, например напряжения постоянного тока, так и нескольких величин, например, тока, напряжения, сопротивления. Такие универсальные приборы обычно называют мультиметрами (например, мультиметр ВР-11А). Мультиметры обычно имеют два вида переключателей: переключатель рода измеряемой величины — напряжения постоянного или переменного, сопротивления, частоты и переключатель предела измерения. Кроме того, имеются клеммы или гнезда для подключения измерительных проводов. Мультиметры питаются от сети переменного тока с частотой 50 Гц и напряжением 220 В. При измерениях мультиметром ВР-11А отсчет показания следует проводить не ранее третьего числа, появляющегося на индикаторе.

При всех видах измерений необходимо перейти на больший предел, когда прибор индицирует выход за предел (буква «П» в старшем разряде) и изменить полярность входного сигнала при мигании знака «-» в старшем разряде.

Погрешность измерения мультиметра ВР-11 А.

Постоянное напряжение: ±(0,5% Ux +4 зн.).

Переменное напряжение: ±(0,5% Ux + 10 зн.),

где Ux — показание прибора;

зн. — единица младшего разряда.

Достоинства электронных приборов: высокое входное сопротивление, что позволяет проводить измерения без влияния на цепь; широкий диапазон измерений, высокая чувствительность, широкий частотный диапазон, высокая точность измерений.

6. Погрешности измерений и измерительных приборов

Качество средств и результатов измерений принято характеризовать указанием их погрешностей. Разновидностей погрешностей около 30. Определения им даны в литературе по измерениям. Следует иметь в виду, что погрешности средств измерений и погрешности результатов измерений — понятия не идентичные. Исторически часть наименований разновидности погрешностей закрепилась за погрешностями средств измерений, другая за погрешностями результатов измерений, а некоторые применяются по отношению и к тем, и к другим.

Читайте также:  Судебный способ защиты конституция

Способы представления погрешности следующие.

В зависимости от решаемых задач используются несколько способов представления погрешности, чаще всего используются абсолютная, относительная и приведенная.

Абсолютная погрешность измеряется в тех же единицах что и измеряемая величина. Характеризует величину возможного отклонения истинного значения измеряемой величины от измеренного.

Относительная погрешность – отношение абсолютной погрешности к значению величины. Если мы хотим определить погрешность на всем интервале измерений, мы должны найти максимальное значение отношения на интервале. Измеряется в безразмерных единицах.

Класс точности – относительная погрешность, выраженная в процентах. Обычно значения класса точности выбираются из ряда: 0,1; 0,5: 1,0; 1,5; 2,0; 2,5 и т. д.

Понятия абсолютной и относительной погрешностей применяют и к измерениям, и к средствам измерения, а приведенная погрешность оценивает только точность средств измерения.

Абсолютная погрешность измерения — это разность между измеренным значением х и ее истинным значением хи :

(1.1)

Обычно истинное значение измеряемой величины неизвестно, и вместо него в (1.1) подставляют значение величины, измеряемой более точным прибором, т. е. имеющим меньшую погрешность, чем прибор, дающий значение х. Абсолютная погрешность выражается в единицах измеряемой величины. Формулой (1.1) пользуются при поверке измерительных приборов.

Относительная погрешность измерения равна отношению абсолютной погрешности к истинному значению измеряемой величины и выражается в процентах:

(1.2)

По относительной погрешности измерения проводят оценку точности измерения.

Приведенная погрешность измерительного прибора определяется как отношение абсолютной погрешности к нормирующему значению xn и выражается в процентах:

(1.3)

Нормирующее значение обычно принимают равным верхнему пределу рабочей части шкалы, у которой нулевая отметка находится на краю шкалы.

Приведенная погрешность определяет точность измерительного прибора, не зависит от измеряемой величины и имеет единственное значение для данного прибора. Из (1.3) следует, что для приборов абсолютная погрешность — величина, постоянная по всей шкале. Так как относительная погрешность измерения тем больше, чем меньше измеряемая величина х по отношению к пределу измерения прибора хN.

Многие измерительные приборы различаются по классам точности. Класс точности прибора G — обобщенная характеристика, которая характеризует точность прибора, но не является непосредственной характеристикой точности измерения, выполняемого с помощью данного прибора.

Класс точности прибора численно равен наибольшей допустимой приведенной основной погрешности, вычисленной в процентах. Для амперметров и вольтметров установлены следующие классы точности: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0; 5,0. Эти числа наносятся на шкалу прибора. Например, класс 1 характеризует гарантированные границы погрешности в процентах (± 1%, например, от конечного значения 100 В, т. е. ±1В) в нормальных условиях эксплуатации.

По международной классификации приборы с классом точности 0,5 и точнее считаются точными или образцовыми, а приборы с классом точности 1,0 и грубее — рабочими. Все приборы подлежат периодической поверке на соответствие метрологических характеристик, в том числе и класса точности, их паспортным значениям. При этом образцовый прибор должен быть точнее поверяемого через класс, а именно: поверка прибора с классом точности 4,0 проводится прибором с классом точности 1,5, а поверка прибора с классом точности 1,0 проводится прибором с классом точности 0,2.

Читайте также:  Химик разработавший способ получения синтетического каучука

Поскольку на шкале прибора приводится и класс точности прибора G, и предел измерения XN, то абсолютная погрешность прибора определяется из формулы (1.3):

(1.4)

Связь относительной погрешности измерения с классом точности прибора G выражается формулой:

(1.5)

откуда следует, что относительная погрешность измерения равна классу точности прибора только при измерении предельной величины на шкале, т. е. когда х = XN. С уменьшением измеряемой величины относительная погрешность возрастает. Во сколько раз XN > х, во столька раз > G. Поэтому рекомендуется выбирать пределы измерения показывающего прибора так, чтобы отсчитывать показания в пределах последней трети шкалы, ближе к ее концу.

7. Представление результата измерений при однократных измерениях

Результат измерения состоит из оценки измеряемой величины и погрешности измерения, характеризующей точность измерения. По ГОСТ 8.011-72 результат измерения представляют в форме:

А±,Р, (1.6)

где А — результат измерения;

— абсолютная погрешность прибора;

Р — вероятность, при статистической обработке данных.

При этом А и должны оканчиваться цифрами одинакового разряда, а погрешность не должна иметь более двух значащих цифр.

Если при обработке данных теория вероятности не применялась, то вероятность Р не указывают.

Измерения, проводимые при выполнении большинства работ, относятся к техническим, которые выполняют однократно. Погрешность прямых однократных измерений определяется погрешностью измерительного прибора .

Пример. Измеряют напряжение сети U щитовым вольтметром типа
Э-377, класса точности 1,5, с пределом шкалы 250 В. Показание
вольтметра U=215 В. Сначала определяют абсолютную погрешность
вольтметра:

Затем записывают результат измерения с оценкой погрешности:

U=(215±4)B.
Относительная погрешность измерения составляет:

В окончательном ответе должно быть сообщено: «Измерение проведено с относительной погрешностью = 1,7%. Измеренное напряжение U=(215±4) В».

8. Косвенные измерения и их погрешности

Косвенным измерением называется измерение, при котором искомая величина находится по известной зависимости между этой величиной и другими величинами, полученными в результате прямых измерений. Например, сопротивление R можно определить по формуле: R=U/I, где напряжение U и ток I измерены вольтметром и амперметром соответственно.

Выражения для абсолютной и относительной погрешностей некоторых функциональных зависимостей приведены в табл. 1.3.

P=UI+UI

R=(IU+UI)/I2

P=U+I

P=UICos

P=UICos+UICos+

+UICos

P=U+I+Cos

Постоянный и переменный ток

X=A+B

X=(A+B)/(A — B)

Постоянный и переменный ток

X=A+B+C

X=(A+B+C)/(A+B+C)

Очевидно, что погрешности косвенного измерения значения X часто значительно превосходят по величине погрешности прямого измерения электрических величин. Поэтому целесообразно по возможности применять для исследования электрических цепей прямые измерения.

Источник

Оцените статью
Разные способы