- Способы измерения удельной теплоемкости
- Удельная теплоёмкость
- Q = c ∙ m (t2 — t1)
- Удельная теплоемкость вещества
- Нагревание и охлаждение
- Виды теплопередачи
- Теплопроводность
- Конвекция
- Излучение
- Удельная теплоемкость: понятие и формула для расчета
- Таблица удельных теплоемкостей
- Измерение удельной теплоемкости
- Теоретические основы и оборудование для точного определения удельной теплоемкости методом дифференциальной сканирующей калориметрии
- Что такое удельная теплоемкость?
- Зависимость удельной теплоемкости от температуры
- Значения удельной теплоемкости известных веществ
- Дифференциальная сканирующая калориметрия
- Стандарты
- Программное обеспечение STARe — шесть способов определения удельной теплоемкости
- Метод непосредственного расчета
- Метод с использованием сапфира
- Изотермическая ступенчатая ДСК
- ТМДСК со стационарным режимом
- ТМДСК
- TOPEM ®
Способы измерения удельной теплоемкости
Изменение внутренней энергии путём совершения работы характеризуется величиной работы, т.е. работа является мерой изменения внутренней энергии в данном процессе. Изменение внутренней энергии тела при теплопередаче характеризуется величиной, называемой количествоv теплоты.
Количество теплоты – это изменение внутренней энергии тела в процессе теплопередачи без совершения работы. Количество теплоты обозначают буквой Q.
Работа, внутренняя энергия и количество теплоты измеряются в одних и тех же единицах — джоулях (Дж), как и всякий вид энергии.
В тепловых измерениях в качестве единицы количества теплоты раньше использовалась особая единица энергии — калория (кал), равная количеству теплоты, необходимому для нагревания 1 грамма воды на 1 градус Цельсия (точнее, от 19,5 до 20,5 °С). Данную единицу, в частности, используют в настоящее время при расчетах потребления тепла (тепловой энергии) в многоквартирных домах. Опытным путем установлен механический эквивалент теплоты — соотношение между калорией и джоулем: 1 кал = 4,2 Дж.
При передаче телу некоторого количества теплоты без совершения работы его внутренняя энергия увеличивается, если тело отдаёт какое-то количество теплоты, то его внутренняя энергия уменьшается.
Если в два одинаковых сосуда налить в один 100 г воды, а в другой 400 г при одной и той же температуре и поставить их на одинаковые горелки, то раньше закипит вода в первом сосуде. Таким образом, чем больше масса тела, тем большее количество тепла требуется ему для нагревания. То же самое и с охлаждением.
Количество теплоты, необходимое для нагревания тела зависит еще и от рода вещества, из которого это тело сделано. Эта зависимость количества теплоты, необходимого для нагревания тела, от рода вещества характеризуется физической величиной, называемой удельной теплоёмкостью вещества.
Удельная теплоёмкость
Удельная теплоёмкость – это физическая величина, равная количеству теплоты, которое необходимо сообщить 1 кг вещества для нагревания его на 1 °С (или на 1 К). Такое же количество теплоты 1 кг вещества отдаёт при охлаждении на 1 °С.
Удельная теплоёмкость обозначается буквой с . Единицей удельной теплоёмкости является 1 Дж/кг °С или 1 Дж/кг °К.
Значения удельной теплоёмкости веществ определяют экспериментально. Жидкости имеют большую удельную теплоёмкость, чем металлы; самую большую удельную теплоёмкость имеет вода, очень маленькую удельную теплоёмкость имеет золото.
Поскольку кол-во теплоты равно изменению внутренней энергии тела, то можно сказать, что удельная теплоёмкость показывает, на сколько изменяется внутренняя энергия 1 кг вещества при изменении его температуры на 1 °С. В частности, внутренняя энергия 1 кг свинца при его нагревании на 1 °С увеличивается на 140 Дж, а при охлаждении уменьшается на 140 Дж.
Количество теплоты Q, необходимое для нагревания тела массой m от температуры t1°С до температуры t2°С, равно произведению удельной теплоёмкости вещества, массы тела и разности конечной и начальной температур, т.е.
Q = c ∙ m (t2 — t1)
По этой же формуле вычисляется и количество теплоты, которое тело отдаёт при охлаждении. Только в этом случае от начальной температуры следует отнять конечную, т.е. от большего значения температуры отнять меньшее.
Это конспект по теме «Количество теплоты. Удельная теплоёмкость». Выберите дальнейшие действия:
Источник
Удельная теплоемкость вещества
О чем эта статья:
Нагревание и охлаждение
Эти два процесса знакомы каждому. Вот нам захотелось чайку, и мы ставим чайник, чтобы нагреть воду. Или ставим газировку в холодильник, чтобы охладить.
Логично предположить, что нагревание — это увеличение температуры, а охлаждение — ее уменьшение. Все, процесс понятен, едем дальше.
Но не тут-то было: температура меняется не «с потолка». Все завязано на таком понятии, как количество теплоты. При нагревании тело получает количество теплоты, а при нагревании — отдает.
- Количество теплоты — энергия, которую получает или теряет тело при теплопередаче.
В процессах нагревания и охлаждения формулы для количества теплоты выглядят так:
Нагревание
Охлаждение
Q — количество теплоты [Дж]
c — удельная теплоемкость вещества [Дж/кг*˚C]
tконечная — конечная температура [˚C]
tначальная — начальная температура [˚C]
В этих формулах фигурирует и изменение температуры, о котором мы сказали выше, и удельная теплоемкость, речь о которой пойдет дальше.
А вот теперь поговорим о видах теплопередачи.
Виды теплопередачи
- Теплопередача — это физический процесс передачи тепловой энергии от более нагретого тела к менее нагретому.
Здесь все совсем несложно, их всего три: теплопроводность, конвекция и излучение.
Теплопроводность
Тот вид теплопередачи, который можно охарактеризовать, как способность тел проводить энергию от более нагретого тела к менее нагретому.
Речь о том, чтобы передать тепло с помощью соприкосновения. Признавайтесь, грелись же когда-нибудь возле батареи. Если вы сидели к ней вплотную, то согрелись вы благодаря теплопроводности. Обниматься с котиком, у которого горячее пузо, тоже эффективно.
Порой мы немного перебарщиваем с возможностями этого эффекта, когда на пляже ложимся на горячий песок. Эффект есть, только не очень приятный. Ну а ледяная грелка на лбу дает обратный эффект — ваш лоб отдает тепло грелке.
Конвекция
Когда мы говорили о теплопроводности, мы приводили в пример батарею. Теплопроводность — это когда мы получаем тепло, прикоснувшись к батарее. Но все вещи в комнате к батарее не прикасаются, а комната греется. Здесь вступает конвекция.
Дело в том, что холодный воздух тяжелее горячего (холодный просто плотнее). Когда батарея нагревает некий объем воздуха, он тут же поднимается наверх, проходит вдоль потолка, успевает остыть и спуститься обратно вниз — к батарее, где снова нагревается. Таким образом, вся комната равномерно прогревается, потому что все более горячие потоки сменяют все менее холодные.
Излучение
Пляж мы уже упоминали, но речь шла только о горячем песочке. А вот тепло от солнышка — это излучение. В этом случае тепло передается через волны.
Обоими способами. То тепло, которое мы ощущаем непосредственно от камина (когда лицу горячо, если вы расположились слишком близко к камину) — это излучение. А вот прогревание комнаты в целом — это конвекция.
Удельная теплоемкость: понятие и формула для расчета
Формулы количества теплоты для нагревания и охлаждения мы уже разбирали, но давайте еще раз:
Нагревание
Охлаждение
Q — количество теплоты [Дж]
c — удельная теплоемкость вещества [Дж/кг*˚C]
tконечная — конечная температура [˚C]
tначальная — начальная температура [˚C]
В этих формулах фигурирует такая величина, как удельная теплоемкость. По сути своей — это способность материала получать или отдавать тепло.
С точки зрения математики удельная теплоемкость вещества — это количество теплоты, которое надо к нему подвести, чтобы изменить температуру 1 кг вещества на 1 градус Цельсия:
Удельная теплоемкость вещества
Q — количество теплоты [Дж]
c — удельная теплоемкость вещества [Дж/кг*˚C]
tконечная — конечная температура [˚C]
tначальная — начальная температура [˚C]
Также ее можно рассчитать через теплоемкость вещества:
Удельная теплоемкость вещества
c — удельная теплоемкость вещества [Дж/кг*˚C]
C — теплоемкость вещества [Дж/˚C]
Величины теплоемкость и удельная теплоемкость означают практически одно и то же. Отличие в том, что теплоемкость — это способность всего вещества к передаче тепла. То есть формулу количества теплоты для нагревания тела можно записать в таком виде:
Количество теплоты, необходимое для нагревания тела
Q — количество теплоты [Дж]
c — удельная теплоемкость вещества [Дж/кг*˚C]
tконечная — конечная температура [˚C]
tначальная — начальная температура [˚C]
Таблица удельных теплоемкостей
Удельная теплоемкость — табличная величина. Часто ее указывают в условии задачи, но при отсутствии в условии — можно и нужно воспользоваться таблицей. Ниже приведена таблица удельных теплоемкостей для некоторых (многих) веществ.
Источник
Измерение удельной теплоемкости
Теоретические основы и оборудование для точного определения удельной теплоемкости методом дифференциальной сканирующей калориметрии
Что такое удельная теплоемкость?
Теплоемкость — это физическая характеристика вещества, определяемая как количество теплоты, которое требуется для увеличения его температуры на заданную величину. Удельная теплоемкость, или отношение теплоемкости материала к массе — это количество теплоты, необходимое для увеличения температуры одного грамма материала на один градус шкалы Цельсия (или Кельвина). Эта физическая характеристика используется в разных целях, в том числе при оптимизации технологических процессов и для оценки термических рисков. Единицей измерения удельной теплоемкости является Дж/г·К.
Для расчета теплоемкости материала используются следующие уравнения:
где cp = удельная теплоемкость; m = масса в граммах; q = количество полученной или потерянной теплоты; ∆T = изменение температуры.
Зависимость удельной теплоемкости от температуры
Удельная теплоемкость вещества зависит от температуры. На графике видно, что удельная теплоемкость сапфира возрастает с температурой, что характерно для большинства веществ. Вода отличается исключительно большой удельной теплоемкостью около 4 Дж/г·К с аномальной температурной зависимостью: минимум теплоемкости приходится на температуру около 35 °C.
Чтобы получить дополнительную информацию, посмотрите вебинар «Определение удельной теплоемкости методом ДСК»:
Значения удельной теплоемкости известных веществ
Вещества реагируют на нагревание по-разному. На практике эта разница лучше всего заметна в поведении металла и воды под воздействием прямого солнечного света. Металл, в отличие от воды, нагревается быстро. Это означает, что теплоемкость воды выше теплоемкости металла.
Значения удельной теплоемкости твердых веществ и жидкостей находятся в диапазоне от 0,1 до 5 Дж/г·К. Удельная теплоемкость большинства веществ возрастает вместе с температурой. По этой причине теплоемкость измеряют, как правило, в относительно большом температурном диапазоне. В таблице приведены значения для 25 °C.
Вещество | Корунд | Алюминий | Свинец | Полистирол | Вода |
cp (Дж г –1 ·K –1 ) | 0,895 | 0,776 | 0,129 | 1,3 | 4,18 |
Более подробную информацию можно найти в справочнике МЕТТЛЕР ТОЛЕДО «Термический анализ на практике».
Дифференциальная сканирующая калориметрия
Дифференциальная сканирующая калориметрия (ДСК) — универсальный метод, который применяется во многих научных, испытательных и производственных лабораториях. Этот метод основан на измерении теплового потока в образце, который нагревается, охлаждается или выдерживается в изотермических условиях (при постоянной температуре).
ДСК — распространенный метод определения удельной теплоемкости благодаря своей простоте, короткому циклу измерения и достижимой точности в пределах ± 2 % (в зависимости от варианта осуществления метода; см. следующий раздел).
Обычные приборы для ДСК позволяют выполнять измерения при температуре до 700 °C. Выше 700 °C можно получить хорошие результаты с помощью систем ТГА/ДСК МЕТТЛЕР ТОЛЕДО.
На графике видно, что удельная теплоемкость полистирола в выбранном диапазоне линейно растет с увеличением температуры.
Стандарты
Сопоставимые данные можно получить, если придерживаться общепризнанных и повсеместно применяемых стандартных процедур. В этом случае гарантируется единообразие процессов производства и контроля качества. Соблюдение стандартов — лучший способ обеспечения достоверности результатов испытаний. В аналитической работе наличие стандарта может заменить валидацию метода, которая требуется для обеспечения качества, получения аккредитации или сертификата. Стандарты в области термического анализа разрабатывают многие национальные и международные организации, в том числе ISO, ASTM, DIN и CEN. При использовании метода ДСК удельная теплоемкость рассчитывается на основе анализа полученной кривой теплового потока. Процедура анализа и расчета описана в стандартах ISO 11357-1, ISO 11357-4, DIN 53765, DIN 51007-1 и ASTM E1269.
Программное обеспечение STARe — шесть способов определения удельной теплоемкости
Расчет удельной теплоемкости на основании кривой теплового потока, полученной методом ДСК, может быть выполнен несколькими способами. В программном обеспечении STAR e МЕТТЛЕР ТОЛЕДО поддерживаются следующие методы: