Способы измерения температур кратко

Основные способы измерения температуры тела

Температуру в стационаре, как правило, измеряют 2 раза в день (в 7—8 ч утра и в 17—19 ч вечера), при необходимости измерение проводят чаще – каждые 2 или 4 часа.

Места измерения температуры:

· в подмышечной впадине,

· в паховой складке,

· в шейной складке у детей,

· в ротовой полости,

· в области височной артерии,

Показатели температуры тела зависят от того, где именно проводится измерение. Не существует единой «нормальной температуры». Результаты могут различаться: температура в ротовой полости обычно на 0,5 градуса ниже измеренной в прямой кишке и на 0,5 градуса выше температуры тела, измеренной под мышкой. Температура тела в ушном канале, равна или несколько выше ректальной.

1. Способы измерения температуры:

1. Аксиллярное — измерение температуры тела в подмышечной впадине.

Подмышечная ямка чаще всего используется в России для измерения температуры тела, так как это практически удобно. Но не практикуется в западных странах, потому что при данном способе термометрии получаются наименее точные результаты, чем при измерении в других местах. Более того, температура может быть неодинаковой в левой и правой подмышечных впадинах (чаше слева на 0,1-0,3 0 С выше). Если при сравнительном измерении температуры разница больше 0,5 0 С, то это указывает на воспалительный процесс на той стороне, где наблюдаются более высокие цифры, или же на неточность измерения.

Нормальная температура тела в подмышечной впадине: 36,3-36,9 0 С.

2. Оральное/буккальное — измерение температуры тела в ротовой полости.

Данный способ измерения температуры тела распространён в англоязычных странах и является довольно надёжным. Можно проводить щечным методом (за щекой) или сублингвальным (под языком), причем сублингвальное измерение более предпочтительно, чем щечное. Подъязычное пространство является достаточно узким и отражает температуру артерий языка. Однако температура рта находится под влиянием съеденной пищи, выпитой жидкости, а также дыхания через рот. Для более точного измерения надо держать рот постоянно закрытым, что представляет собой сложную задачу для детей. Для совсем маленьких детей существуют термометры в виде соски. Необходимо помнить, что увеличение частоты дыхания на каждые 10 дыхательных движений выше нормы может снижать температуру в ротовой полости на 0,5 0 С.

В основном точность измерения температуры таким способом выше, чем при измерении ее подмышкой, но ниже, чем в прямой кишке.

Нормальная температура тела в полости рта: 36,8-37,3 0 С.

3. Ректальное — измерение температуры тел в прямой кишке.

Этот способ измерения считался всегда самым надежным, но несколько новых исследований показали некоторые ограничения для его использования. Дело в том, что ректальная температура меняется более медленно, чем внутренняя температура тела, и остается высокой в течение более длительного времени. Правильное измерение температуры зависит также от глубины введения термометра, характера местного кровообращения и от наличия каловых масс. Многие находят этот способ неудобным.

Нормальная температура тела в прямой кишке: 37,3-37,70 С.

4. Вагинальное — измерение температуры тела во влагалище.

У женщин температура зависит от фазы менструального цикла, так во время овуляции отмечается подъем температуры до 37,5º С, длится около 12-14 дней и обусловлена действием прогестерона. Затем перед менструацией температура падает. Отсутствие понижения температуры может указывать на оплодотворение.

Нормальная температура тела во влагалище (зависит от фазы менструального цикла): 36,7-37,5º С.

5. Тимпаническое измерение температуры тела в области наружного слухового прохода. Способ распространён в Германии при измерении температуры тела у детей.

Нормальная температура тела в полости наружного слухового прохода: 36,8-37,30 С.

6. Термометрия в области височной артерии: измерение температуры при помощи инфракрасного термометра можно произвести на лбу. Доказано, что этот относительно новый способ измерения является более точным, чем термометрия в области наружного слухового прохода и более удобным, чем ректальный способ.

Нормальная температура: 36,8-37,3º С.

7. Жидкокристаллическая термография

В редких случаях (например, при очень сильном беспокойстве больных) вместо термометрии тела можно измерять температуру только что выпущенной мочи.

Запомните! При повышении температуры тела на каждый градус по Цельсию выше 37°С, частота дыхательных движений увеличивается на 4 дыхания, как у взрослых, так и у детей, а пульс увеличивается у взрослых на 8-10 ударов в минуту, а у детей до 20 ударов в минуту. При возникновении сомнений в искренности пациента измерение повторяют, ссылаясь на неисправность термометра.

Источник

Методы измерения температуры

В связи с распространением по планете вируса COVID-19, на сегодняшний день, наиболее актуален вопрос измерения температуры тела человека. Давайте наиболее подробно рассмотрим используемые для этой цели решения, которые сегодня присутствуют на рынке.

Термометр — прибор для измерения температуры воздуха, почвы и различных тел.

Существует несколько видов термометров:

Жидкостные — основаны на принципе изменения объёма жидкости, которая залита в термометр (обычно это спирт или ртуть), при изменении температуры окружающей среды;

Читайте также:  Американская трипаносома способ заражения

Механические — действуют по тому же принципу, что и жидкостные, но в качестве датчика обычно используется металлическая спираль либо пластина;

Электронные — принцип работы электронных термометров основан на изменении сопротивления проводника при изменении температуры окружающей среды;

Оптические — измеряют мощность теплового излучения объекта. Инфракрасный сенсор находящийся внутри пирометра воспринимает излучение и передает аналоговый сигнал на электронную схему. Сигнал оцифровывается, и на его основе производятся вычисления результата, который выводится на ЖК-дисплей. Инфракрасные измерители температуры тела позволяют измерять температуру без непосредственного контакта с человеком;

● Газовые – содержат в себе сосуд, заполненный определённым объемом газа. При нагревании газ расширяется и приводит в движение стрелку, которая отображает температуру на градуированной шкале.

В связи с распространением по планете вируса COVID-19, на сегодняшний день, наиболее актуален вопрос измерения температуры тела человека. Давайте наиболее подробно рассмотрим используемые для этой цели решения, которые сегодня присутствуют на рынке.

Самым распространенным и дешёвым термометром для измерения температуры тела в домашних и больничных условиях, был и остается ртутный градусник.

Плюсы ртутного градусника:

● точность измерения — погрешность составляет всего 0,1 градуса;
● долговечность — служит десятки лет, если его не ронять;
● легкость очистки и дезинфекции;
● невысокая цена — в аптеке его можно приобрести за сумму до 100 рублей.

Но есть и отрицательные стороны использования ртутного прибора:

● высокий риск разбить при падении: мелкими осколками стекла можно порезаться, а пары ртути опасны для здоровья;
● длительность измерения: требуется около 10 минут для получения точного показателя.

Более современным аналогом ртутного термометра считается электронный градусник. Замер производится за счет действия встроенных датчиков в корпусе, а результат термометрии выводится на небольшой экран, что очень удобно.

В зависимости от модели могут быть различные дополнительные функции: звуковой сигнал, говорящий о конце измерения, водонепроницаемость и т.д. Но главным плюсом такого градусника является его безопасность: можно спокойно давать ребенку и не бояться того, что градусник разобьется. Длительность измерения гораздо меньше, чем у предшественника — достаточно одной минуты для получения результата.

Но даже у электронных термометров есть недостатки:

● для правильного использования нужно предварительно изучить инструкцию, а это делают далеко не все;
● электронные термометры обладают меньшей точностью;
● прибор функционирует за счет батареек, а сесть они могут в любой момент, даже когда купить их не представляется возможным;
● более высокая стоимость — от 250 до 1600 рублей в зависимости от набора функций и производителя.

Самым продвинутым, быстрым и удобным в эксплуатации термометром, в условиях контроля заболеваемости большого количества людей, является пирометр.

Пирометр – бесконтактный термометр. Прибор измеряет температуру объекта на расстоянии и выводит данные на экран. Большинство современных пирометров фиксирует излучение тепла от предмета в инфракрасном диапазоне. Также существуют пирометры, которые измеряют тепловое излучение в видимом диапазоне света.

Пирометры делят на две группы. В первой – приборы, которые выводят на дисплей температуру в градусах. Они наиболее востребованные.

Во второй группе приборы с графическим выводом. Они отображают объект в виде тепловой карты, на которой области с разной температурой отмечены разными цветами. По такому принципу работают тепловизоры.

Плюсы портативного пирометра:

● позволяет быстро и без непосредственного контакта измерить температуру тела;
● лёгкое измерение температуры, даже если человек находится в движении.

К минусам можно отнести следующее:

● пирометры корректно работают только при нормальных условиях, показания прибора нельзя считать достоверными, если температура измеряется во время дождя, снега, тумана, запыленности или задымленности;
● необходимость замены батареек, либо подзарядки аккумулятора;
● достаточно высокая стоимость — от 5500 до 80000 рублей в зависимости от набора функций и производителя.

Так как большинство пирометров схожи по своим функциям и органам управления, рассмотрим принцип их работы на примере инфракрасного пирометра TOPMED NC-178.

От всех объектов, твердых, жидких или газообразных исходит ИК-излучение. Интенсивность излучения зависит от температуры объекта.

Термометр NC-178 способен измерять температуру тела человека по ИК-излучению. Точное измерение производится благодаря встроенному в устройство температурному датчику, который постоянно анализирует и регистрирует температуру окружающей среды. Таким образом, как только оператор подносит пирометр к человеку и активирует датчик измерения, прибор сразу проводит оценку ИК-излучения, исходящего от артериального кровотока. Следовательно, температура тела может быть измерена без влияния температуры окружающей среды.

Термометр NC-178 разработан для проведения мгновенного измерения температуры тела бесконтактным методом (рекомендуется измерять температуру на лбу в области височной артерии). Поскольку височная артерия располагается достаточно близко к поверхности кожи, является доступной и имеет постоянный и равномерный кровоток, измерение температуры получается точным. Эта артерия соединяется с сердцем через сонную артерию, которая напрямую связана с аортой.

Читайте также:  Компенсация морального вреда это способ защиты гражданских прав по гражданскому кодексу

Так формируется часть главного канала артериальной системы. Эффективность, скорость и комфорт измерения температуры в данной области делает этот метод идеальным в сравнении с другими методами измерения температуры.

Порядок действий при измерении температуры тела

Включите прибор, наведите на измеряемую область – тело или поверхность объекта

на расстоянии 3-5 см, нажмите на кнопку измерения, результат отобразится на дисплее.

Внимание! При проведении измерений необходимо учитывать установленный режим

работы термометра – «Body» или «Surface» (тело человека или иная поверхность).

Чтобы обеспечить достоверный и надежный результат измерения, необходимо выполнить следующие рекомендации:

● убрать волосы со лба;
● вытереть пот или испарину;
● избегать сквозняков и потоков воздуха (от кондиционера или окна);
● соблюдать интервал 3-5 сек. между повторными измерениями.

Таким образом, современный пирометр даст Вам возможность быстро и точно измерить температуру тела человека, что позволит оценить его физическое состояние и принять меры к недопущению распространения коронавируса на территории РФ.

Источник

МЕТОДЫ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ

Рассмотрим следующие методы измерения температуры: объ­емный, манометрический, терморезисторный (метод термосопро­тивлений), термоэлектрический и пирометрический.

1. Объемный метод [14], [15]

Объемный метод измерения температуры основан на тепловом расширении (изменении объема) различных тел. По этому прин­ципу строятся дилатометрические, биметаллические и жидкост­ные термометры.

Дилатометрический термометр (рис. 7.1) состоит из патрона 1 и штока 2, изготовленных из материалов с различ­ными коэффициентами линейного расширения и .

Для повышения чувствительности необходимо применять ма­териалы, у которых и возможно больше отличаются друг от друга, в то же время коэффициент линей­ного расширения материала штока следует выбирать близким к нулю для умень­шения теплового запаздыва­ния, обусловленного тем, что шток прогревается мед­леннее, чем патрон (патрон непосредственно соприка­сается со средой, темпера­тура которой измеряется, а шток отделен от нее воз­душной прослойкой). Исходя из этого шток целесообразно изго­товлять из сплава типа инвар ( =l*10- 6 ), a патрон — из мате­риала с большим , например из дуралюмина ( = 23-10

Ввиду малости перемещения штока (десятые доли мм) ди­латометрический термометр содержит передаточно-множительный механизм, увеличивающий перемещение штока до величины, удобной для отсчета.

Биметаллические термометры (рис. 7.2) так же, как и дилатометрические, основаны на тепловом расширении твердых тел и отличаются лишь способом соединения компонент Теплочувствительный элемент представляет собой биметалличе­скую пластину, состоящую из двух сваренных или сплавленных (реже спаянных) по всей длине пластин с различными коэффи­циентами линейного расширения и . При нагревании биме­таллическая пластина изгибается таким образом, что ее выпук­лость образуется со стороны материала с большим .

Угол изгиба биметаллической пластины определяется фор­мулой [15] ,

где l — длина биметаллической пластины;

h — суммарная толщина биметаллической пластины;

— величина изменения температуры.

Линейное перемещение прямой консольно закрепленной пла­стины

,

где — чувствительность.

В авиационных приборах применяют биметаллические пла­стины, состоящие из стали ( = 19 • 10 -6 ) и инвара ( =1 • 10 -6 ).

По сравнению с дилатометрическим элементом биметалличе­ский элемент дает большее перемещение при меньших габаритах, что позволяет уменьшить передаточное отношение механизма.

При выполнении биметаллического чувствительного элемента в виде спиральной или винтовой пластины (см. рис. 7.2,6, в), один конец которой закреплен неподвижно, а другой — связан с выходной осью, можно получить большой угол поворота вы­ходной оси (до 360°), что позволяет поместить указывающую стрелку непосредственно на эту ось и исключить из конструк­ции термометра передаточно-множительный механизм.

Биметаллические термометры подобного рода применяются для измерения температуры окружающей среды (см. рис. 7.2, г).

Жидкостные термометры действуют на основе тепло­вого изменения объема жидкостей.

Схемы двух вариантов жидкостных термометров показаны на рис. 7.3.

Жидкостный термометр (см. рис. 7.3, а) состоит из цилиндри­ческого баллона 1, внутрь которого впаян сильфон 2. Свободный конец сильфона связан со штоком 3, выпущенным наружу бал­лона, а пространство между стенками сильфона и баллона за­полнено жидкостью. Баллон помещается в среду, температура

которой измеряется. Объем жидкости зависит от температуры следующим образом:

,

где — начальный объем жидкости при 0 0 С,

— коэффициент объемного расширения жидкости,

— температура в 0 С.

Значения для некоторых жидкостей приведены в таблице 7.1.

Линейное перемещение конца штока при нагревании элемента от 0 0 С до температуры С определяется выражением

,

где F- эффективная площадь сильфона.

Увеличение жесткости сильфона приводит к увеличению дав­ления внутри системы, что, однако, не влияет на величину s ра­бочего хода. Вследствие практической несжимаемости жидкости величина s определяется приращением объема жидкости иэф­фективной площадью сильфона. В то же время увеличение жест­кости сильфона позволяет повысить верхний предел измерения, так как температура кипения жидкости увеличивается с увеличе­нием давления.

Жидкостный термометр дистанционного типа (см. рис. 7.3, б) состоит из заполненного жидкостью баллона, погруженного в сре­ду, температура которой измеряется, и соединенного капиллярной трубкой с упругим чувствительным элементом (сильфоном, мано­метрической коробкой или трубчатой пружиной), перемещение которого через передаточно-множительный механизм передается на указывающую стрелку. Показания дистанционного жидкост­ного термометра подвержены влиянию температуры воздуха, ок­ружающего соединительную трубку и указатель. Погрешность пропорциональна объему соединительной трубки и упругого чув­ствительного элемента.

Читайте также:  Способы тренировки зрительной памяти

2. Манометрический метод[3], [12]

Манометрический метод измерения температуры основан на тепловом изменении давления газа (пара) внутри замкнутого объема. По этому методу действуют газовые и парожидкостные термометры.

Схемы газовых термометров подобны схемам жидкостных термометров. Различие состоит в том, что внутренняя полость теплочувствительного элемента заполняется вместо жидкости инертным газом.

Вследствие сжимаемости газа действие газового термометра принципиально отличается от действия жидкостного термометра: газовый термометр работает не на принципе расширения рабо­чего тела, а на принципе изменения его давления. В жидкостном термометре рабочий ход сильфона благодаря практической не­сжимаемости жидкости определяется тепловым приращением объема жидкости и эффективной площадью сильфона и не зави­сит от жесткости сильфона, в то время как давление жидкости пропорционально жесткости сильфона. В газовом термометре, наоборот, давление газа почти не зависит от жесткости сильфо­на (если пренебречь изменением его объема по сравнению с на­чальным объемом всей системы), а рабочий ход сильфона обрат­но пропорционален его жесткости.

В газовом термометре, построенном по схеме рис. 73, а, абсо­лютное давление газа (при условии постоянства его объема) равно

,

где — термический коэффициент давления,

р0 – начальное давление внутри баллона при .

Перемещение центра сильфона

,

где сж коэффициент линейной жесткости сильфона,

р2 давление окружающей среды.

В газовом термометре, построенном по схеме, представленной на рис. 7.3, б, возникают погрешности при изменении давления и температуры окружающего воздуха. Для исключения влияния давления окружающей среды можно применить вместо диффе­ренциального манометра манометр абсолютного давления; для уменьшения влияния температуры окружающей среды объемы соединительной трубки и упругого чувствительного элемента должны быть как можно меньшими.

Принципиальная схема парожидкостного термометра также соответствует схеме жидкостного термометра (см. рис. 7.3), но заполняется система специальной жидкостью, кото­рая при нормальном давлении закипает при низкой температуре. К числу таких жидкостей, получивших название низкокипящих, относятся, например, метилхлорид (СН3С1), закипающий при —24° С (при р = 760 мм рт. ст.) и ацетон (С3Н6О), закипающий при + 56° С (при р = 760 мм рт. ст.).

При нагревании баллона до некоторой температуры абсолют­ное, давление в системе возрастает до определенной величины р1 , при которой часть жидкости переходит в пар и устанавливается равновесие, при котором дальнейшее испарение жидкости пре­кращается. С уменьшением температуры часть пара конденси­руется, т. е. переходит в жидкое состояние, и давление в системе уменьшается.

Давление p1 однозначно зависит от ; вид функциональной зависимости определяется только составом жидкости и не связан с формой и геометрическими размерами баллона и упругого чувствительного элемента.

В табл. 7.2 приведены характеристики некоторых низкокипя­щих жидкостей.

Нижний предел измерения ограничен температурой, при ко­торой весь пар переходит в жидкость и зависит от начального давления, при котором заполняется система. Верхний предел из­мерения ограничен критической температурой, выше которой давление резко возрастает и нарушается функциональная связь между р и .

3. Терморезисторный метод (метод термосопротивлений) [4], [9]

Терморезисторный метод измерения температуры основан на тепловом изменении электрического сопротивления проводников или полупроводников.

Верхний предел измеряемых температур зависит от материа­ла терморезистора. Применяются терморезисторы медные (до + 180° С), никелевые (до +300°С) платиновые (до +1250° С) иполупроводниковые (до + 180° С).

Подробнее приборы и датчики температуры, основанные на терморезисторном методе, рассматриваются в § 7.4.

4. Термоэлектрический метод [4], [7]

Термоэлектрический метод измерения температуры основан на возникновении контактного потенциала между двумя контак­тирующими между собой разнородными проводниками (или по­лупроводниками) при разности температур свободных и рабочего концов этих проводников.

Верхний предел измеряемых температур, определяемый глав­ным образом теплостойкостью термоэлектродов, достигает для хромель-копелевых термопар +800° С, платино-платинородиевых + 1600° С, вольфрам-молибденовых до 2400° С и т. д.

Подробнее приборы и датчики температуры, основанные на термоэлектрическом методе, рассматриваются в § 7.5.

5. Оптический метод[6]

Оптический метод измерения температуры основан на зави­симости энергии, излучаемой нагретым телом, от его темпера­туры. Яркость излучения оценивается визуально с помощью оптических устройств или преобразуется в электрический сигнал спомощью чувствительных фотоэлектрических элементов. По­строенные по этому методу приборы называют пирометрами из­лучения. Различают пирометры полного излучения (радиацион­ные), пирометры частичного излучения (яркостные) и пиромет­ры цветовые (спектрального соотношения).

На летательных аппаратах нашли преобладающее примене­ние терморезисторные датчики температуры (термосопротивле­ния) итермоэлектрические датчики (термопары) благодаря сво­ей простоте, стабильности характеристик ивозможности преоб­разования температуры непосредственно в электрическую вели­чину ‘.

Терморезисторы и термопары используются как в качестве воспринимающих устройств систем автоматического регулирова­ния и управления, так и в качестве датчиков электрических ди­станционных термометров.

Источник

Оцените статью
Разные способы