- Об измерении скорости потока жидкостей и газов
- Термоанемометрические датчики
- Об водосодержащих и агрессивных средах
- Об определении направления потока
- О работе с «микропотоками»
- Заключение
- Способы измерения скорости газа
- 1. УСЛОВИЯ ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ И ХАРАКТЕРИСТИКИ ИЗМЕРЯЕМОЙ СРЕДЫ
- 2. МЕТОД ИЗМЕРЕНИЯ
- 3. ТРЕБОВАНИЯ К СРЕДСТВАМ ИЗМЕРЕНИЙ СКОРОСТИ ПОТОКА И ВСПОМОГАТЕЛЬНЫМ УСТРОЙСТВАМ, НЕОБХОДИМЫМ ДЛЯ ИХ УСТАНОВКИ
- 4. ПОДГОТОВКА К ИЗМЕРЕНИЯМ
Об измерении скорости потока жидкостей и газов
В нынешнем году мы начали представлять в России компанию IST — швейцарского производителя тонкопленочных датчиков температуры, относительной влажности, проводимости жидкости и скорости потока.
Продукция IST — это не масс-маркет, они не выпускают
аналоги DHT22 миллионные тиражи дешевых микросхем для стандартных применений. Вместо этого упор делается на специальные задачи: нестандартные конструктивы и диапазоны температур, повышенная точность, минимальное время отклика и так далее.
Среди многообразной продукции IST есть такая интересная штука как flow sensors — датчики скорости потока сплошных сред. Под катом рассказываю как они работают, как выглядят и зачем нужны. Думаю что это будет интересно не только разработчикам расходомеров.
Итак, для измерения расхода жидкостей или газов используются различные физические эффекты. Для измерения скорости потока используют механические, оптические, электромагнитные, ультразвуковые и другие чувствительные элементы, позволяющие по косвенным характеристикам определить расход сплошной среды, проходящей по трубе.
Здесь заметим, что под расходом может подразумеваться как объем потока (литры в минуту или кубические метры в минуту), так и масса потока (килограмм в минуту) или его скорость (метры в секунду). Допуская, что в большинстве приложений известны и характеристики среды, и характеристики трубы, в которой движется поток, мы будем считать все перечисленные понятия тождественными.
Поскольку бОльшую часть продукции IST составляют платиновые датчики температуры (термосопротивления), для определения скорости потока также используются тепловые эффекты.
В тепловых расходомерах измерения производятся либо по охлаждению нагретого тела, помещенного в поток (термоанемометры), либо по переносу тепловой энергии между двумя расположенными вдоль потока точками (калориметрические расходомеры). Посмотрим как используются оба принципа в реальных приложениях.
Термоанемометрические датчики
Расходомеры с термоанемометрическими преобразователями IST применяются преимущественно для потоков газов. В простейшем случае они состоят из нагревательного элемента и датчика температуры. Фактически это два термосопротивления, на базе которых реализуется следующий алгоритм:
При отсутствии потока температура микронагревателя остается неизменной, а при наличии потока нагреватель начинает отдавать тепло внешней среде. Количество тепла, которое отдается потоку, зависит от нескольких факторов: от начальной разности температур нагревателя и среды, от параметров трубы и собственно от скорости потока.
Поскольку разность температур определяется схемой включения датчика расхода, а параметры трубы мы считаем неизменными, теплоотдача нагревательного элемента может использоваться для измерения скорости потока.
Нагреватель и датчик температуры включаются в мостовую схему, которая уравновешена в отсутствии потока и разбалансирована при изменении сопротивления нагревателя. При увеличении скорости потока нагреватель охлаждается, мост разбалансируется и сигнал разбаланса поступает на усилитель. Выходной сигнал усилителя сообщает нагревателю более высокую температуру и приводит мост обратно в равновесное состояние. Этот же сигнал используется как выходной, т.е. как функция скорости потока.
При известных параметрах трубы, положения датчика, типа потока, а также неизменных теплофизических характеристиках газа (состав, давление, температура) такая функция может быть вычислена по одной из общеизвестных методик.
На рисунке приведен пример схемы включения датчика расхода и график зависимости напряжения Uflow от скорости потока.
По такому принципу работают датчики серии FS7. На керамической подложке из диоксида циркония наносятся токопроводящие дорожки – платиновые микронагреватель и датчик температуры, между которыми предусмотрены соединения. Вся конструкция покрыта тонким изолирующим слоем из стекла.
Чувствительные элементы такой конструкции позволяют измерять скорость потока в диапазоне от 0 до 100 м/c с чувствительностью 0.01 м/c и погрешностью менее 3 % от измеряемой величины. Впрочем, точность измерений определяется не только чувствительным элементом, но и схемой его включения, и способом калибровки конечного устройства.
Диапазон рабочих температур датчика FS7 составляет -20… 150 °C для стандартного исполнения, однако IST практикует изготовление датчиков с допустимой температурой вплоть до +400 °C.
На рисунке показаны два исполнения датчиков FS7 — в корпусе и без него.
Об водосодержащих и агрессивных средах
Важно заметить, что датчики FS7, а также рассмотренный ниже FS2, используются в основном для газов, а также для жидких сред, не содержащих воду — при длительной работе в воде верхний изолирующий слой датчика постепенно разрушается и возникает электролиз.
Для потока воды и других подобных сред предусмотрен модуль Out Of Liquid — анемометрический датчик, элементы которого изолированы от потока. Out Of Liquid — это небольшая трубка из нержавеющей стали, на внешней стенке которой размещены микронагреватель и датчик температуры.
Трубка имеет длину 40 мм и диаметр 4 мм, рабочий температурный диапазон этого решения — от -50 °C до +180 °C.
Об определении направления потока
Термоанемометрические расходомеры имеют некоторые очевидные ограничения. В частности, они не позволяют определить направление потока и не подходят для приложений, требующих высокой чувствительности датчика.
Калориметрические расходомеры, напротив, предназначены для относительно медленных потоков газа с переменным направлением. Калориметрический датчик состоит из трех элементов – микронагревателя и двух датчиков, измеряющих температуру до и после него. В отсутствии потока тепловое пятно, излучаемое нагревателем, неподвижно, поэтому справа и слева от нагревателя сплошная среда имеет одну и ту же температуру. При возникновении потока тепловое пятно «сдвигается» согласно направлению и скорости потока. Таким образом, при известных параметрах трубы и характеристиках среды скорость потока может быть измерена по разности показаний датчиков температуры.
При производстве колориметрического датчика на керамическую подложку также наносятся платиновые дорожки и соединения между ними — микронагреватель и два датчика температуры.
Поскольку при наличии потока нагревательный элемент охлаждается, а для измерений этот процесс уже не используется, на датчике расхода предусматривается дополнительный компенсационный датчик температуры.
По такому принципу построены датчики серии FS2. С их помощью можно определять как направление, так и скорость потока. В диапазоне от 0 до 2.5 м/c датчик имеет чувствительность 0.001 м/c.
Диапазон измерений калориметрических датчиков ограничивается самим принципом его работы – при определенной скорости потока тепловое пятно «сдвигается» слишком далеко и разность показателей правого и левого датчиков уже не позволяет судить о скорости потока.
Это досадное свойство калориметрических датчиков довольно просто обходится. Когда поток достигает определенной скорости, можно «переключиться» на работу в термоанемометрическом режиме — начать использовать пару нагреватель + компенсирующий датчик температуры по уже известному нам термоанемометрическому принципу.
При использовании комбинации двух способов измерения модуль величины скорости потока на большей части диапазона определяется квадратичной функцией от напряжения Uflow (нижний график), а направление потока – по напряжению с полномостовой схемы, состоящей из пары датчиков и микронагревателя.
О работе с «микропотоками»
Если задача вообще не предполагает работы с потоками со скоростью более 1.5 м/c и речь идет о газообразной среде, то можно использовать датчики серии MFS02 (Micro Flow Sense). MFS02 имеет максимальную чувствительность (0,0003 м/с) и скорость срабатывания (время отклика менее 10 мс).
Структурно датчик MFS02 похож на FS2 и состоит из микронагревателя, пары датчиков температуры и дополнительного компенсирующего датчика. Однако MFS02 изготавливаются по другому технологическому процессу: в стеклокерамической подложке датчика выделяется зона, представляющая собой мембрану. Предполагается, что в поток погружается только мембрана, поэтому именно на ней располагаются компоненты для калориметрических измерений, а компенсирующий датчик температуры установлен вне мембраны.
Датчик MFS02 имеет размер всего 3.5 x 5.1 мм, а к контактным площадкам довольно сложно подпаяться, поэтому MFS02 также доступен в составе плат-расширений, предоставляющих доступ к выводам элемента.
Заключение
В заключении поблагодарю читателя за внимание и напомню, что вопросы о применении продукции, о которой мы пишем на хабре, можно также задавать на email, указанный в моем профиле.
Источник
Способы измерения скорости газа
ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР
Государственная система обеспечения единства измерений
РАСХОД ЖИДКОСТИ И ГАЗА
Методика выполнения измерений по скорости
в одной точке сечения трубы
State system for ensuring the uniformity of measurements.
Measurement procedure of liquid and gas flow rate by the velocity
at a single point of pipe cross-section
Дата введения 1980-07-01
УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ постановлением Государственного комитета СССР по стандартам от 2 августа 1979 г. N 2929
ПЕРЕИЗДАНИЕ. Октябрь 1984 г.
Настоящий стандарт устанавливает метод измерений объемного расхода жидкости и газа по скорости в одной точке поперечного сечения напорных цилиндрических труб диаметром не менее 300 мм.
Стандарт не распространяется на измерения расхода нефти, кристаллизирующихся и криогенных жидкостей.
1. УСЛОВИЯ ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ И ХАРАКТЕРИСТИКИ ИЗМЕРЯЕМОЙ СРЕДЫ
1.1. При выполнении измерений должны быть соблюдены следующие условия:
поток в трубопроводе должен быть сформировавшимся и турбулентным, а движение — установившимся;
площадь измерительного сечения в течение всего периода измерений должна оставаться постоянной;
на стенках трубы не должно быть отложений и наростов измеряемой среды или продуктов коррозии.
1.2. Измеряемая среда должна быть однофазной или по своим физическим свойствам близка к однофазной.
1.3. При измерении расхода газа число Маха не должно превышать 0,25.
2. МЕТОД ИЗМЕРЕНИЯ
2.1. Метод измерения расхода жидкости и газа по скорости потока в одной точке поперечного сечения основан на закономерностях турбулентного течения в трубах, согласно которым скорость потока в определенной точке сечения трубы пропорциональна средней скорости в данном сечении.
2.2. При определении расхода данным методом необходимо измерить первичным преобразователем местную скорость в одной точке поперечного сечения трубы и площадь данного измерительного сечения. Расход , м /с, определяют по формуле
,
где — отношение средней скорости потока в данном сечении к скорости потока в точке измерения;
— местная скорость потока, м/с;
— площадь поперечного сечения трубы, м .
Примечание. Для увеличения надежности допускается устанавливать несколько первичных преобразователей в одном сечении.
2.3. Местную скорость потока измеряют в точках, где она равна средней скорости в данном сечении (в точках средней скорости) или на оси трубы.
Точки средней скорости при развитом турбулентном течении измеряемой среды расположены на расстоянии (0,242±0,013) от внутренней поверхности стенки трубы, где — внутренний радиус трубы в измерительном сечении.
2.4. Коэффициент при измерении в точках средней скорости остается постоянным и равным единице во всем диапазоне турбулентного течения. При измерении скорости потока на оси трубы коэффициент остается постоянным только в автомодельной области турбулентного режима течения (см. справочное приложение 1).
При измерении скорости потока на оси трубы значение коэффициента зависит от гидравлических характеристик труб (шероховатости поверхности, числа Рейнольдса Re) и его необходимо предварительно определять экспериментально для каждого измерительного сечения.
Примечание. При достоверно известном значении коэффициента гидравлического трения коэффициент допускается принимать по табл.1.
2.5. Для измерения расхода жидкости и газа необходимо наличие прямого участка трубопровода, обеспечивающего симметричное установившееся распределение скоростей потока, соответствующее развитому турбулентному течению в трубе. Значение коэффициента гидравлического трения трубопровода не должно превышать 0,06. При измерении скорости на оси трубы режим течения должен соответствовать автомодельной области турбулентного течения.
Режим течения определяют в зависимости от значения числа Re и коэффициента по графику, приведенному в справочном приложении 1.
3. ТРЕБОВАНИЯ К СРЕДСТВАМ ИЗМЕРЕНИЙ СКОРОСТИ ПОТОКА И ВСПОМОГАТЕЛЬНЫМ УСТРОЙСТВАМ, НЕОБХОДИМЫМ ДЛЯ ИХ УСТАНОВКИ
3.1. Для измерения скорости потока применяют первичный преобразователь. Первичным преобразователем скорости может служить устройство, преобразующее местную скорость потока в сигнал, удобный для передачи, обработки и регистрации. В качестве первичных преобразователей скорости используют напорные трубки, специальные тахометрические преобразователи, термоанемометры, термогидрометры, электромагнитные преобразователи скорости и т.п. Первичный преобразователь выбирают в зависимости от диаметра трубы, значения местной скорости потока, диапазона измерений, избыточного давления и свойств измеряемой среды (плотности, агрессивности, наличия твердых включений и т.п.).
Примеры выполнения наиболее распространенных первичных преобразователей — напорных трубок приведены в справочном приложении 2.
3.2. Предел допускаемой погрешности измерения скорости потока первичным преобразователем не должен превышать ±3%.
3.3. Отношение максимального размера поперечного сечения первичного преобразователя скорости к диаметру трубы не должно превышать 0,06. Показания первичного преобразователя скорости, расположенного в точке средней скорости, не должны зависеть от поперечного градиента скорости. Для напорных трубок, загнутых навстречу потоку, показания не зависят от градиента скорости потока, если отношение диаметра трубки к диаметру трубы не превышает 0,02.
3.4. Первичный преобразователь скорости устанавливают как до начала эксплуатации трубопровода, так и во время эксплуатации без прекращения подачи по нему измеряемой среды.
3.5. Устройство для ввода первичного преобразователя скорости должно обеспечивать возможность определения расстояния от стенки трубы до оси первичного преобразователя. Схемы устройств для установки первичных преобразователей скорости приведены в справочном приложении 3.
3.6. Расстояние от стенки трубы до первичного преобразователя принимают равным 0,242 или .
Это расстояние контролируют непосредственным измерением или при помощи устройства ввода первичного преобразователя (см. справочное приложение 3). Погрешность определения расстояния от внутренней поверхности стенки трубы до первичного преобразователя не должна превышать 0,005 внутреннего диаметра трубы.
3.7. Устройства для установки первичного преобразователя скорости должны обеспечивать устойчивость штанги. Уровень вибрации штанги не должен превышать допускаемый для принятого первичного преобразователя во всем диапазоне измеряемых скоростей.
4. ПОДГОТОВКА К ИЗМЕРЕНИЯМ
4.1. Измерительное сечение выбирают на прямом участке трубы, длина которого перед измерительным сечением должна быть возможно большей, но, в зависимости от расположенных перед ним местных сопротивлений, не менее значений, указанных в табл.2.
Длина участка, выраженная в диаметрах трубы, при измерении
Источник