- Определение прочностных характеристик
- Что такое прочность материала?
- Методы определения прочности
- Виды неразрушающего контроля
- Наши цены
- Заказать определение прочности бетона
- Определение прочностных характеристик
- Что такое прочность материала?
- Методы определения прочности
- Разрушающий метод
- Неразрушающий метод
- Виды неразрушающего контроля
- Показатели прочности и пластичности материала
- Способы определения твердости материалов.
- Схема измерения твердости по Роквеллу
- Определение твердости по методу Виккерса
- Хрупкое и вязкое разрушение материала.
Определение прочностных характеристик
Определение прочности материалов – одна из составляющих комплексного технического обследования.
Что такое прочность материала?
Прочность – это способность материала сопротивляться разрушению, а также необратимому изменению формы (пластической деформации) при действии внешних нагрузок.
Также прочность зависит не только от свойств материала, но и от вида напряженного состояния и эксплуатационных условий.
Методы определения прочности
Первый способ носит название разрушающего метода и состоит в выявлении предельных несущих способностей с испытание контрольных образцов до их полного разрушения.
Эти образцы должны быть изготовлены из того же материала и по той же технологии производства, что и испытуемые строительные конструкции (для вновь возводимых объектов), либо могут быть отобраны непосредственно из готовых строительных конструкций (для существующих объектов).
Разрушающий метод является наиболее точным и результаты, полученные в процессе его выполнения, максимально приближены к реальным физическим характеристикам материалов. К сожалению, далеко не всегда его возможно применить на практике, поэтому наибольшее распространение в обследовании получил другой метод.
Второй способ связан с производством испытаний неразрушающими методами и позволяет сохранить эксплуатационную пригодность рассматриваемого объекта без нарушения его несущей способности, что наиболее приемлемо при обследовании зданий и сооружений, находящихся в эксплуатации.
Виды неразрушающего контроля
Неразрушающий контроль построен на косвенном определении свойств и характеристик материалов и может быть классифицирован по следующим видам:
- метод проникающих сред, основанный на регистрации индикаторных жидкостей или газов, находящихся в материале конструкции;
- механические методы испытаний, связанные с анализом местных разрушений, а также изучением поведения объектов в резонансном состоянии (методы скалывания ребра, отрыва со скалыванием, упругого отскока, ударного импульса, пластических деформаций); неразрушающее определение прочности бетона чаще всего выполняется с помощью данных методов;
- акустические методы испытаний, связанные с определением параметров упругих колебаний с помощью ультразвуковой нагрузки и регистрацией эффектов акустоэмиссии;
- магнитные методы испытаний (индукционный, магнитопорошковый и т.д.);
- радиационные испытания, связанные с использованием нейтронов и радиоизотопов;
- радиоволновые методы, построенные на эффекте распространения высококачественных и сверхчастотных колебаний в излучаемых объектах;
- электрические методы, основанные на оценке электроемкости, электроиндуктивности и электросопротивления изучаемого объекта.
Наши цены
Консультация | Бесплатно | |
Определение прочностных характеристик | от 15 000 руб. | Определить стоимость |
Заказать определение прочности бетона
Нашей организацией производится определение прочности бетона любых строительных конструкций как неразрушающими, так и разрушающими методами.
Для определения стоимости и получения подробной консультации по всем возникшим вопросам Вы можете позвонить по телефону +7 (495) 128-53-66 либо оставить заявку с помощью формы ниже, и мы сами Вам перезвоним.
Мы гарантируем выставление коммерческого предложения в течение суток.
Источник
Определение прочностных характеристик
Определение прочности материалов – одна из составляющих комплексного технического обследования.
Что такое прочность материала?
Прочность – это способность материала сопротивляться разрушению, а также необратимому изменению формы (пластической деформации) при действии внешних нагрузок.
Также прочность зависит не только от свойств материала, но и от вида напряженного состояния и эксплуатационных условий.
Методы определения прочности
Разрушающий метод
Первый способ носит название разрушающего метода и состоит в выявлении предельных несущих способностей с испытание контрольных образцов до их полного разрушения.
Эти образцы должны быть изготовлены из того же материала и по той же технологии производства, что и испытуемые строительные конструкции (для вновь возводимых объектов), либо могут быть отобраны непосредственно из готовых строительных конструкций (для существующих объектов).
Разрушающий метод является наиболее точным и результаты, полученные в процессе его выполнения, максимально приближены к реальным физическим характеристикам материалов. К сожалению, далеко не всегда его возможно применить на практике, поэтому наибольшее распространение в обследовании получил другой метод.
Неразрушающий метод
Второй способ связан с производством испытаний неразрушающими методами и позволяет сохранить эксплуатационную пригодность рассматриваемого объекта без нарушения его несущей способности, что наиболее приемлемо при обследовании зданий и сооружений, находящихся в эксплуатации.
Виды неразрушающего контроля
Неразрушающий контроль построен на косвенном определении свойств и характеристик материалов и может быть классифицирован по следующим видам:
- метод проникающих сред, основанный на регистрации индикаторных жидкостей или газов, находящихся в материале конструкции;
- механические методы испытаний, связанные с анализом местных разрушений, а также изучением поведения объектов в резонансном состоянии (методы скалывания ребра, отрыва со скалыванием, упругого отскока, ударного импульса, пластических деформаций); неразрушающее определение прочности бетона чаще всего выполняется с помощью данных методов;
- акустические методы испытаний, связанные с определением параметров упругих колебаний с помощью ультразвуковой нагрузки и регистрацией эффектов акустоэмиссии;
- магнитные методы испытаний (индукционный, магнитопорошковый и т.д.);
- радиационные испытания, связанные с использованием нейтронов и радиоизотопов;
- радиоволновые методы, построенные на эффекте распространения высококачественных и сверхчастотных колебаний в излучаемых объектах;
- электрические методы, основанные на оценке электроемкости, электроиндуктивности и электросопротивления изучаемого объекта.
Источник
Показатели прочности и пластичности материала
Прочность — это способность материала сопротивляться пластической деформации.
Показатели прочности:
1. Предел пропорциональности — это напряжение, ниже которого соблюдается прямая пропорциональная зависимость между напряжением и относительной деформацией:
,
где Рпц — нагрузка при пределе пропорциональности.
2. Предел упругости s0,05 — это условное напряжение, при котором остаточная деформация составляет 0,05% расчетной длины. Ввиду малости величины остаточной деформации на пределе упругости его иногда принимают равным пределу пропорциональности.
3. Предел текучести физический — это наименьшее напряжение при котором образец деформируется без увеличения растягивающей нагрузки:
,
Если на кривой деформации отсутствует четко выраженная площадка текучести (рис. 7, а), то определяют предел текучести условный.
4. Условный предел текучести s0,2 — это напряжение, при котором остаточное удлинение достигает 0,2% длины участка образца на его рабочей части, удлинение которого принимается в расчет при определении указанной характеристики:
,
5. Сопротивление значительным пластическим деформациям (для пластичных материалов) характеризуется пределом прочности.
Предел прочности (временное сопротивление) sВ — это условное напряжение, соответствующее наибольшей нагрузке РМАХ, предшествовавшей разрыву образца:
.
Пластичность — это способность материала проявлять, не разрушаясь, остаточную деформацию.
Показатели пластичности:
1. Относительное удлинение после разрыва d — это отношение приращения расчетной длины образца (lK – l0) после разрушения (рис. 8) к начальной расчетной длине l0, выраженное в процентах:
Для определения длины расчетной части lK после разрыва части образца плотно прикладывают друг к другу (рис. 8) и измеряют расстояние между метками, которые ограничивали начальную расчета длину.
Относительное сужение y — это отношение абсолютного уменьшения площади поперечного сечения в шейке образца (F0 – FK) к начальной площади сечения F0 выраженное в процентах:
где F0 и FK — площади поперечного сечения образца до и после испытания соответственно.
Способы определения твердости материалов.
Твердость — способность материала сопротивляться упругой и пластической деформации при внедрении в него более твердого тела (индентора).
Определение твердости по методу Роквелла
При измерении твердости по Роквеллу индентор — алмазный конус с углом при вершине 120° (ГОСТ 9013-59) и радиусом закругления 0,2 мм или стальной шарик диаметром 1,5875 мм (1/16 дюйма) — вдавливается в образец под действием двух последовательно прилагаемых нагрузок: предварительной Р0 и общей Р = Р0 + Р1, где Р1 — основная нагрузка.
Схема измерения твердости по Роквеллу
Сначала индентор вдавливается в поверхность образца под предварительной нагрузкой Р0 = 100 Н, которая не снимается до конца испытания, что позволяет повысить точность испытаний, т.к. исключает влияние вибраций и тонкого поверхностного слоя. Под нагрузкой Р0 индентор погружается в образец на глубину h0. Затем на образец подается полная нагрузка Р = Р0 + Р1, глубина вдавливания увеличивается. Последняя после снятия основной нагрузки Р1 (на индентор вновь действует только предварительная нагрузка Р0) определяет число твердости по Роквеллу (HR). Чем больше глубина вдавливания h, тем меньше число твердости HR.
Твердомер Роквелла автоматически показывает значения числа твердости в условных единицах по одной из трех шкал — А, В и С и соответственно они обозначаются как HRA, HRB и HRC. Выбор шкалы производится по предварительно известной твердости материала по Бринеллю из табл.3. Если сведений о твердости материала образца нет, то после ориентировочных замеров необходимо обратиться к табл.5 и затем произвести окончательные замеры твердости.
Примерная твердость по Бринеллю | Шкала Роквелла | Тип индентора | Общая нагрузка | Допускаемые величины твердости по шкале |
Н | кгс | |||
Менее 228 | Шкала В (красная) | стальной шарик | 25-100 | |
229-682 | Шкала С (черная) | алмазный конус | 22-68 | |
363-720 | Шкала А (черная) | алмазный конус | 70-85 |
Существенное значение имеет толщина испытуемого образца. После замера твердости на обратной стороне образца не должно быть следов отпечатка.
Во всех случаях измерений значение предварительной нагрузки постоянно и равно Р0 = 100 Н.
Число твердости выражается формулами:
, (3)
, (4)
где (0,002 — цена деления шкалы индикатора твердомера Роквелла).
Таким образом, единица твердости по Роквеллу безразмерная величина, соответствующая осевому перемещению индентора на 0,002 мм.
Существует несколько типов приборов для измерения твердости по Роквеллу, но принципиальные схемы их работы аналогичны.
Определение твердости по методу Виккерса
При стандартном измерении твердости по Виккерсу (ГОСТ 2999-75) в поверхность образца вдавливается алмазный индентор в форме четырехгранной пирамиды с углом при вершине a»136°. После удаления нагрузки P (10¸1000 Н), действовавшей определенное время (10-15 с), измеряют диагональ отпечатка d, оставшегося на поверхности образца.
Число твердости HV определяют по формуле:
(5)
где Р — нагрузка в кгс, d — длина диагонали отпечатка в мм.
Число твердости записывается без единиц измерения, например 230 HV. Если число твердости выражают в МПа, то после него указывают единицу измерения, например HV = 3200 МПа.
Относительно небольшие нагрузки и малая глубина вдавливания индентора обуславливают необходимость более тщательной подготовки поверхности, чем при измерении твердости по Бринеллю. Образцы, как правило, полируют, с поверхности снимается наклеп.
Измерения осуществляют на приборах марки ТП. Прибор смонтирован на станине 1. Образец помещают на опорный столик 5. Нагрузка прилагается к индентору 6 через установленный на призмах рычаг. Рычаг с подвеской 14 без сменных грузов 15 обеспечивает минимальную нагрузку 50 Н.
Схема прибора ТП для определения твердости по Виккерсу:
1 — станина; 2 — педаль грузового привода; 3 — маховичок; 4 — винт подъемный; 5 — столик опорный; 6 — индентор; 7 — рукоятка; 8 — шпин-дель; 9 — шпиндель промежуточный; 10 — микроскоп измерительный; 11 — призма; 12 — рычаг; 13 — штырь; 14 — подвеска; 15 — грузы сменные; 16 — шпиндель пустотелый; 17 — ры-чаг ломанный; 18 — винт регулиро-вочный; 19 — амортизатор масляный; 20 — груз; 21 и 22 — рычаги; 23 — руко-ятка.
После установки образца на столик 5 совмещают перекрестие окуляра микроскопа 10 с тем местом на образце, твердость которого необходимо измерить. Наводят на резкость, устанавливают индентор над образцом, включают механизм грузового привода. Пока образец находится под нагрузкой, горит сигнальная лампочка, расположенная в верхней части передней панели твердомера.
После снятия нагрузки поворотную головку переводят в такое положение, чтобы полученный отпечаток вновь был виден в микроскоп. Затем с помощью барабанчика окуляр-микрометра замеряют длину диагонали отпечатка.
Физический смысл числа твердости по Виккерсу аналогичен НВ, величина HV тоже является усредненным условным напряжением в зоне контакта индентор — образец и характеризует обычно сопротивление материала значительной пластической деформации.
Числа HV и НВ близки по абсолютной величине только до 400-450 НV. Выше этих значений метод Бринелля дает искаженные результаты из-за остаточной деформации стального шарика. Алмазная же пирамида в методе Виккерса позволяет определять твердость практически любых металлических материалов. Еще более важное достоинство этого метода — геометрическое подобие отпечатков при любых нагрузках, поэтому возможно строгое количественное сопоставление чисел твердости НV любых материалов, испытанных при различных нагрузках.
Хрупкое и вязкое разрушение материала.
При хрупком разрушении макропластическая деформация отсутствует. В металле возникает только упругая деформация. Разрушение происходит путем отрыва или скола, когда плоскость разрушения перпендикулярна действующим напряжениям. Разрушение начинается от дефекта (микротрещины), вблизи которого концентрируются напряжения, превосходящие теоретическую прочность металла.
При вязком разрушении металл претерпевает значительную пластическую деформацию. У пластичных материалов, благодаря релаксации напряжений, их концентрация вблизи несплошностей оказывается недостаточной и развитие трещин скола (т.е. хрупких) не происходит. Вязкое разрушение происходит путем сдвига.
Источник