Способы измерения погрешности метрология

19. Методы определения и учета погрешностей

19. Методы определения и учета погрешностей

Методы определения и учета погрешностей измерений используются для того, чтобы:

1) на основании результатов измерений получить настоящее (действительное) значение измеряемой величины;

2) определить точность полученных результатов, т. е. степень их соответствия настоящему (действительному) значению.

В процессе определения и учета погрешностей оцениваются:

1) математическое ожидание;

2) среднеквадратическое отклонение.

Точечная оценка параметра (математического ожидания или среднеквадратического отклонения) – это оценка параметра, которая может быть выражена одним числом. Точечная оценка является функцией от экспериментальных данных и, следовательно, сама должна быть случайной величиной, распределенной по закону, зависящему от закона распределения для значений исходной случайной величины Закон распределения значений точечной оценки будет зависеть также от оцениваемого параметра и от числа испытаний (экспериментов).

Точечная оценка бывает следующих видов:

1) несмещенная точечная оценка;

2) эффективная точечная оценка;

3) состоятельная точечная оценка.

Несмещенная точечная оценка – это оценка параметра погрешности, математическое ожидание которой равно этому параметру.

Эффективная точечная оценка – это точечная оценка. дисперсия которой меньше, чем дисперсия другой какой угодно оценки этого параметра.

Состоятельная точечная оценка – это оценка, которая при увеличении числа испытаний стремится к значению параметра, подвергающегося оценке.

Основные методы определения оценок:

1) метод максимального правдоподобия (метод Фишера);

2) метод наименьших квадратов.

1. Метод максимального правдоподобия основывается на идее, что сведения о действительном значении измеряемой величины и рассеивании результатов измерений, полученные путем многократных наблюдений, содержатся в ряде наблюдений.

Метод максимального правдоподобия состоит в поиске оценок, при которых функция правдоподобия проходит через свой максимум.

Оценки максимального правдоподобия – это оценки сред—неквадратического отклонения и оценки истинного значения.

Если случайные погрешности распределены по нормальному закону распределения, то оценка максимального правдоподобия для истинного значения представляет собой среднее арифметическое результатов наблюдений, а оценка дисперсии является средним арифметическим квадратов отклонений значений от математического ожидания.

Преимущества оценок максимального правдоподобия заключается в том, что данные оценки:

1) несмещенные асимптотически;

2) асимптотически эффективные;

3) асимптотически распределены по нормальному закону.

2. Метод наименьших квадратов состоит в том, что из определенного класса оценок берут ту оценку, у которой минимальная дисперсия (самую эффективную). Из всех линейных оценок действительного значения, где присутствуют некоторые постоянные, только среднее арифметическое сводит к наименьшему значению дисперсии. В связи с этим при условии распределения значений случайных погрешностей по нормальному закону распределения оценки, полученные с использованием метода наименьших квадратов, идентичны оценкам максимального правдоподобия. Оценка параметров с помощью интервалов проводится посредством нахождения доверительных интервалов, в пределах которых с заданными вероятностями располагаются действительные значения оцениваемых параметров.

Доверительная граница случайного отклонения – это число, представляющее собой длину доверительного интервала, разделенную пополам.

При достаточно большом количестве испытаний доверительный интервал существенно уменьшается. Если увеличивается число испытаний, то допустимо увеличить число доверительных интервалов.

Обнаружение грубых погрешностей

Грубые погрешности – это погрешности, намного превышающие предполагаемые в данных условиях проведения измерений систематические и случайные погрешности. Промахи и грубые погрешности могут появляться из—за грубых ошибок в процессе проведения измерения, технической неисправности средства измерения, неожиданного изменения внешних условий. Для того чтобы исключить грубые погрешности, рекомендуется до начала измерений приближенно определить значение измеряемой величины.

Читайте также:  Народный способ лечения простуды

В случае, если при проведении измерений выясняется, что результат отдельного наблюдения сильно отличается от других полученных результатов, нужно обязательно установить причины такого отличия. Результаты, полученные с резким отличием, можно отбросить и повторно измерить данную величину. Однако в некоторых случаях отбрасывание таких результатов может вызвать ощутимое искажение рассеивания ряда измерений. В связи с этим рекомендуется не отбрасывать необдуманно отличающиеся результаты, а дополнять их результатами повторных измерений.

Если необходимо исключить грубые погрешности в процессе обработки полученных результатов, когда уже нельзя скорректировать условия проведения измерений и провести повторные измерения, то применяются статистические методы.

Общий метод проверки статистических гипотез позволяет выяснить, присутствует ли в данном результате измерений грубая погрешность.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Читайте также

Организация технического учета электроэнергии

Организация технического учета электроэнергии Вопрос. С какой целью устанавливают счетчики технического учета на электростанциях?Ответ. На всех электростанциях мощностью более 10 МВт устанавливают счетчики технического учета, чтобы обеспечивать возможность

Автоматизация контроля и учета электроэнергии

Автоматизация контроля и учета электроэнергии Вопрос. В каких целях создаются автоматизированные системы контроля и учета электроэнергии и мощности (АСКУЭ)?Ответ. АСКУЭ создаются в целях:повышения точности измерений для учета электроэнергии и мощности при ее

14. Методы определения движения жидкости

14. Методы определения движения жидкости Гидростатика изучает жидкость в ее равновесном состоянии.Кинематика жидкости изучает жидкость в движении, не рассматривая сил, порождавших или сопровождавших это движение.Гидродинамика также изучает движение жидкости, но в

14. Виды погрешностей

14. Виды погрешностей Выделяют следующие виды погрешностей:1) абсолютная погрешность;2) относительна погрешность;3) приведенная погрешность;4) основная погрешность;5) дополнительная погрешность;6) систематическая погрешность;7) случайная

19. Методы определения и учета погрешностей

19. Методы определения и учета погрешностей Методы определения и учета погрешностей измерений используются для того, чтобы:1) на основании результатов измерений получить настоящее (действительное) значение измеряемой величины;2) определить точность полученных

11. Методы определения показателей качества

11. Методы определения показателей качества Показателями качества продукции являются числовые характеристики одного или многих свойств продукции, определяющих ее качество, и взятые в установленных условиях ее изготовления и эксплуатации.Выделяют следующие показатели

14. Виды погрешностей

14. Виды погрешностей Выделяют следующие виды погрешностей:Абсолютная погрешность – это значение, вычисляемое как разность между значением величины, полученным в процессе измерений, и настоящим (действительным) значением данной величины.Абсолютная погрешность меры –

44. Методы определения показателей качества

44. Методы определения показателей качества Показателями качества продукции являются числовые характеристики одного или многих свойств продукции, определяющих ее качество, и взятые в установленных условиях ее изготовления и эксплуатации.Критерием разделения методов

ПРАВИЛА УЧЕТА ТЕПЛОВОЙ ЭНЕРГИИ И ТЕПЛОНОСИТЕЛЯ

ПРАВИЛА УЧЕТА ТЕПЛОВОЙ ЭНЕРГИИ И ТЕПЛОНОСИТЕЛЯ МИНИСТЕРСТВО ЭНЕРГЕТИКИ РОССИЙСКОЙ ФЕДЕРАЦИИУТВЕРЖДЕНО Первый заместитель министра топлива и энергетики Российской Федерации В. Н. Костюнин 12 сентября 1995 г.СОГЛАСОВАНО Заместитель председателя Комитета Российской

14.1. Правила учета электрической энергии

14.1. Правила учета электрической энергии Расчеты за потребляемую электроэнергию являются одной из основополагающих позиций договорных взаимоотношений между потребителем и энергоснабжающей организацией, учитывающих интересы обеих сторон.Требования к расчетным

14.2. Приборы учета электрической энергии

14.2. Приборы учета электрической энергии В качестве расчетных и технических (контрольных) средств учета на предприятиях (организациях) используются электросчетчики одно-и трехфазного тока в основном двух типов: индукционные и электронные (1-, 2– и многотарифные),

19. Методы определения первичныхошибок

19. Методы определения первичныхошибок Первичной ошибкой является неточность геометрической формы рабочих поверхностей узлов (звеньев). Подобными ошибками могут считаться отклонения разного рода: геометрические параметры, связанные с формой и поверхностью узлов, а

50. Причины начальных погрешностей

50. Причины начальных погрешностей Начальные погрешности в измерение могут вноситься по следующим причинам.1.Удельный вес:1) степень однородности среды нарушена вследствие нахождения в ней примесей (в том числе и растворимых газов; такие жидкостные среды в гидравлике

Читайте также:  Машинный способ штукатурных работ

16. Методы определения электрических свойств

16. Методы определения электрических свойств Металлы с высокой электропроводностью (медь, алюминий) используются в электромашиностроении, для устройства линий электропередачи, а сплавы с высоким электросопротивлением – для ламп накаливания электронагревательных

18. Дилатометрия. Магнитные свойства металлов и сплавов. Методы определения

18. Дилатометрия. Магнитные свойства металлов и сплавов. Методы определения Дилатометрия – раздел физики; основная задача: изучение влияния внешних условий (температуры, давления, электрического, магнитного полей, ионизирующих излучений) на размеры тел. Главный предмет

49. Химический состав, методы получения порошков, свойства и методы их контроля

49. Химический состав, методы получения порошков, свойства и методы их контроля Порошковые материалы – материалы, получаемые в результате прессования металлических порошков в изделия необходимой формы и размеров и последующего спекания сформованных изделий в вакууме

Источник

Погрешность измерений. Классификация

Погрешность средств измерения и результатов измерения.

Погрешности средств измерений – отклонения метрологических свойств или параметров средств измерений от номинальных, влияющие на погрешности результатов измерений (создающие так называемые инструментальные ошибки измерений).
Погрешность результата измерения – отклонение результата измерения от действительного (истинного) значения измеряемой величины.

Инструментальные и методические погрешности.

Методическая погрешность обусловлена несовершенством метода измерений или упрощениями, допущенными при измерениях. Так, она возникает из-за использования приближенных формул при расчете результата или неправильной методики измерений. Выбор ошибочной методики возможен из-за несоответствия (неадекватности) измеряемой физической величины и ее модели.

Причиной методической погрешности может быть не учитываемое взаимное влияние объекта измерений и измерительных приборов или недостаточная точность такого учета. Например, методическая погрешность возникает при измерениях падения напряжения на участке цепи с помощью вольтметра, так как из-за шунтирующего действия вольтметра измеряемое напряжение уменьшается. Механизм взаимного влияния может быть изучен, а погрешности рассчитаны и учтены.

Инструментальная погрешность обусловлена несовершенством применяемых средств измерений. Причинами ее возникновения являются неточности, допущенные при изготовлении и регулировке приборов, изменение параметров элементов конструкции и схемы вследствие старения. В высокочувствительных приборах могут сильно проявляться их внутренние шумы.

Статическая и динамическая погрешности.

  • Статическая погрешность измерений – погрешность результата измерений, свойственная условиям статического измерения, то есть при измерении постоянных величин после завершения переходных процессов в элементах приборов и преобразователей.
    Статическая погрешность средства измерений возникает при измерении с его помощью постоянной величины. Если в паспорте на средства измерений указывают предельные погрешности измерений, определенные в статических условиях, то они не могут характеризовать точность его работы в динамических условиях.
  • Динамическая погрешность измерений – погрешность результата измерений, свойственная условиям динамического измерения. Динамическая погрешность появляется при измерении переменных величин и обусловлена инерционными свойствами средств измерений. Динамической погрешностью средства измерений является разность между погрешностью средсва измерений в динамических условиях и его статической погрешностью, соответствующей значению величины в данный момент времени. При разработке или проектировании средства измерений следует учитывать, что увеличение погрешности измерений и запаздывание появления выходного сигнала связаны с изменением условий.

Статические и динамические погрешности относятся к погрешностям результата измерений. В большей части приборов статическая и динамическая погрешности оказываются связаны между собой, поскольку соотношение между этими видами погрешностей зависит от характеристик прибора и характерного времени изменения величины.

Систематическая и случайная погрешности.

Систематическая погрешность измерения – составляющая погрешности измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же физической величины. Систематические погрешности являются в общем случае функцией измеряемой величины, влияющих величин (температуры, влажности, напряжения питания и пр.) и времени. В функции измеряемой величины систематические погрешности входят при поверке и аттестации образцовых приборов.

Причинами возникновения систематических составляющих погрешности измерения являются:

  • отклонение параметров реального средства измерений от расчетных значений, предусмотренных схемой;
  • неуравновешенность некоторых деталей средства измерений относительно их оси вращения, приводящая к дополнительному повороту за счет зазоров, имеющихся в механизме;
  • упругая деформация деталей средства измерений, имеющих малую жесткость, приводящая к дополнительным перемещениям;
  • погрешность градуировки или небольшой сдвиг шкалы;
  • неточность подгонки шунта или добавочного сопротивления, неточность образцовой измерительной катушки сопротивления;
  • неравномерный износ направляющих устройств для базирования измеряемых деталей;
  • износ рабочих поверхностей, деталей средства измерений, с помощью которых осуществляется контакт звеньев механизма;
  • усталостные измерения упругих свойств деталей, а также их естественное старение;
  • неисправности средства измерений.
Читайте также:  Народные способы лечения полипов шейки матки

Случайной погрешностью называют составляющие погрешности измерений, изменяющиеся случайным образом при повторных измерениях одной и той же величины. Случайные погрешности определяются совместным действием ряда причин: внутренними шумами элементов электронных схем, наводками на входные цепи средств измерений, пульсацией постоянного питающего напряжения, дискретностью счета.

Погрешности адекватности и градуировки.

Погрешность градуировки средства измерений – погрешность действительного значения величины, приписанного той или иной отметке шкалы средства измерений в результате градуировки.

Погрешностью адекватности модели называют погрешность при выборе функциональной зависимости. Характерным примером может служить построение линейной зависимости по данным, которые лучше описываются степенным рядом с малыми нелинейными членами.

Погрешность адекватности относится к измерениям для проверки модели. Если зависимость параметра состояния от уровней входного фактора задана при моделировании объекта достаточно точно, то погрешность адекватности оказывается минимальной. Эта погрешность может зависеть от динамического диапазона измерений, например, если однофакторная зависимость задана при моделировании параболой, то в небольшом диапазоне она будет мало отличаться от экспоненциальной зависимости. Если диапазон измерений увеличить, то погрешность адекватности сильно возрастет.

Абсолютная, относительная и приведенная погрешности.

Абсолютная погрешность – алгебраическая разность между номинальным и действительным значениями измеряемой величины. Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина, в расчетах её принято обозначать греческой буквой – ∆. На рисунке ниже ∆X и ∆Y – абсолютные погрешности.

Относительная погрешность – отношение абсолютной погрешности к тому значению, которое принимается за истинное. Относительная погрешность является безразмерной величиной, либо измеряется в процентах, в расчетах обозначается буквой – δ.

Приведённая погрешность – погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона. Вычисляется по формуле

где Xn – нормирующее значение, которое зависит от типа шкалы измерительного прибора и определяется по его градуировке:

– если шкала прибора односторонняя и нижний предел измерений равен нулю (например диапазон измерений 0. 100), то Xn определяется равным верхнему пределу измерений (Xn=100);
– если шкала прибора односторонняя, нижний предел измерений больше нуля, то Xn определяется как разность между максимальным и минимальным значениями диапазона (для прибора с диапазоном измерений 30. 100, Xn=Xmax-Xmin=100-30=70);
– если шкала прибора двухсторонняя, то нормирующее значение равно ширине диапазона измерений прибора (диапазон измерений -50. +50, Xn=100).

Приведённая погрешность является безразмерной величиной, либо измеряется в процентах.

Аддитивные и мультипликативные погрешности.

  • Аддитивной погрешностью называется погрешность, постоянную в каждой точке шкалы.
  • Мультипликативной погрешностью называется погрешность, линейно возрастающую или убывающую с ростом измеряемой величины.

Различать аддитивные и мультипликативные погрешности легче всего по полосе погрешностей (см.рис.).

Если абсолютная погрешность не зависит от значения измеряемой величины, то полоса определяется аддитивной погрешностью (а). Иногда аддитивную погрешность называют погрешностью нуля.

Если постоянной величиной является относительная погрешность, то полоса погрешностей меняется в пределах диапазона измерений и погрешность называется мультипликативной (б). Ярким примером аддитивной погрешности является погрешность квантования (оцифровки).

Класс точности измерений зависит от вида погрешностей. Рассмотрим класс точности измерений для аддитивной и мультипликативной погрешностей:

– для аддитивной погрешности:
аддитивная погрешность
где Х – верхний предел шкалы, ∆0 – абсолютная аддитивная погрешность.
– для мультипликативной погрешности:
мультипликативная погрешность
порог чувствительности прибора – это условие определяет порог чувствительности прибора (измерений).

Источник

Оцените статью
Разные способы