Способы измерения плотности твердых тел

ОПРЕДЕЛЕНИЕ ПЛОТНОСТИ ТВЕРДЫХ ТЕЛ РАЗНЫМИ МЕТОДАМИ

Ознакомится с методами измерения физических величин проводимых измерений на примере определения плотности твердых тел.

Скачать:

Вложение Размер
nou_plotnost.doc 268.5 КБ

Предварительный просмотр:

III Ашинский районный конкурс реферативно-исследовательских работ

для учащихся 5-8 классов

Определение плотности твердых тел

Авторы: Фокин Дмитрий, Зарипов Юлиан

7 «А» класс МКОУ СОШ №1 г. Миньяра Руководитель: Лактионова Надежда

Сергеевна, учитель физики

2. Основная часть

2.1. Аппаратура и метод измерений. 4-6

2.2. Определение плотности твердых тел.……………………………. 6-7

2.2.3. Метод безразличного плавания………………………………..10-12 3. Заключение …………………………………….…………………………….12

Что значит измерить физическую величину правильно? На этот вопрос ответить непросто. Обычно смешивают два понятия: правильно и точно. «Часто стараются произвести измерения с наибольшей достижимой точностью, т.е. сделать ошибку измерений по возможности малой. Однако следует иметь в виду, что чем точнее мы хотим измерить, тем труднее это сделать. Поэтому не следует требовать от измерений большей точности, чем это необходимо для решения поставленной задачи .

Я ставлю перед собой задачу определить плотности твердых тел различными методами, сравнить полученные результаты с табличными и убедиться в том, что проводимый нами эксперимент дает небольшую ошибку. Для чего нужно знать плотность вещества? Плотность вещества нужно знать для различных практических целей. Инженер, создавая машину, заранее по плотности и объему материала может рассчитать массу деталей будущей машины. Строитель может определить, какова будет масса строящегося здания. Так, если океанологам известно вертикальное распределение плотности морской воды, то они могут рассчитать направление и скорость течений. Вертикальное распределение плотности необходимо знать и для определения устойчивости водной массы: если масса неустойчива, то есть если более плотная вода лежит выше менее плотной, будет происходить перемешивание. Даже в домашних условиях при покупке ковролина следует обратить внимание на плотность ворса. Ковролин высокой плотности прослужит дольше, и на нем не будут оставаться вмятины от мебельных ножек.

Цель работы: ознакомится с методами измерения физических величин проводимых измерений на примере определения плотности твердых тел.

2. Основная часть

2.1. Аппаратура и метод измерений

Для оценки плотности твердого тела необходимо знать его объем и массу. Массу тела можно определить взвешиванием его на рычажных весах. Объем тела правильной геометрической формы определяют, измеряя его линейные параметры. Таким образом, чтобы узнать плотность тела, необходимо провести ряд физических измерений. Под измерением понимается сравнение измеряемой величины с другой величиной, принятой за единицу измерения.

Измерения делятся на прямые и косвенные. При прямых измерениях определяемая величина сравнивается с единицей измерения непосредственно с помощью измерительного прибора, проградуированного в соответствующих единицах. Примерами прямых измерений могут служить измерения длин линейкой, промежутков времени секундомером. При косвенных измерениях искомое значение величины не измеряется непосредственно, а находится по известной зависимости между этой величиной и величинами, полученными при прямых измерениях. К косвенным относятся, например, измерения объема, плотности твердых тел, измерение скорости движения тела по измерениям отрезков пути и промежутков времени, измерение удельного сопротивления проволоки. Никакая физическая величина не может быть, однако, определена с абсолютной точностью. Другими словами, любое измерение всегда производится с некоторой ошибкой — погрешностью. Поэтому полученное в

результате измерений значение какой-либо величины должно быть записано в виде x ± Δ x, (1)

где Δ x — абсолютная погрешность измерения, характеризующая возможное отклонение измеренного значения данной величины от его истинного значения. При этом, поскольку истинное значение остается неизвестным, можно дать лишь приближенную оценку абсолютной погрешности. Поскольку причины возникновения ошибок бывают самыми разными, необходимо классифицировать погрешности. Только тогда возможна их правильная оценка, так как от типа погрешностей зависит и способ их вычисления.

Погрешности подразделяются на случайные и систематические. Систематической погрешностью называют составляющую погрешности измерения, остающуюся постоянной или закономерно изменяющуюся при повторных измерениях одной и той же величины. Она может быть связана с неисправностями измерительных приборов, неточностью их регулировки, неправильной их установкой. Систематические погрешности в принципе могут быть исключены, поскольку причины, их вызывающие, в большинстве случаев известны.

Случайной погрешностью называют составляющую погрешности измерения, изменяющуюся случайным образом при повторных измерениях одной и той же величины. Случайные погрешности зависят от условий, в которых производятся измерения, от специфики измеряемых объектов. Эти погрешности принципиально неустранимы, однако их величина уменьшается при использовании многократных измерений. Выделяют также погрешности приборов, которые могут иметь как систематический, так и случайный характер. Эти погрешности связаны с несовершенством любого (исправного) измерительного инструмента. Если значение измеряемой величины определяется по шкале инструмента, абсолютная погрешность прибора считается, как правило, равной половине цены деления шкалы (например, линейки) или цене деления шкалы, если стрелка прибора перемещается скачком (секундомер).

Как уже указывалось, случайные погрешности можно уменьшить, многократно измеряя одну и ту же величину. Однако максимально возможная точность измерения определяется теми приборами, которые используются в эксперименте. Поэтому увеличение числа измерений имеет смысл лишь до тех пор, пока случайная погрешность не станет явно меньше погрешности прибора. Для правильной записи конечного результата необходимо округлить рассчитанное значение абсолютной погрешности и сам результат измерения. Как правило, точность оценки погрешности бывает очень небольшой.

Поэтому абсолютная погрешность округляется до одной значащей цифры.

Если, однако, эта цифра оказалась единицей, следует оставить две значащие цифры. Округление конечного результата производится с учетом его погрешности. При этом последняя значащая цифра результата должна быть того же порядка величины (находится в той же десятичной позиции), что и погрешность. Если, к примеру, получено, что ρ = 8723 , 23 кг / м3, а

Δ ρ = 93 , 27 кг / м3,

то правильная запись результата будет выглядеть так

ρ = (8720 ± 90) кг / м3 .

2.2.Определение плотности твердых тел

Тела, изготовленные из различных веществ, при одинаковой массе имеют разные объемы. Железный брус массой 1 т имеет объем 0,13 м 3 , а лед массой 1 т – объем 1,1 м 3 , т.е. почти в 9 раз больше.

Из этих примеров можно сделать и такой вывод, что тела объемом 1 м3 каждое, изготовленные из различных веществ, имеют разные массы. Железо объемом 1 м 3 имеет массу 7800 кг, а лед того же объема – 900 кг, т.е. почти в 9 раз меньше. Это различие объясняется тем, что различные вещества имеют разную плотность. Плотность показывает, чему равна масса вещества, взятого в объеме 1 м 3 .

Плотность – физическая величина, характеризующая свойство тел равного объема иметь разную массу.

Чтобы определить плотность вещества, надо массу тела разделить на его объем. Следовательно, плотность есть физическая величина, равная отношению массы тела к его объему.

Единицей плотности вещества является . Это плотность однородного вещества, масса которого равна 1 кг при объеме 1 м 3 .

2.2.1. Метод Менделеева

Метод Менделеева (метод взвешивания). На одну чашку весов кладется гиря с массой заведомо большей, чем масса тела, а на другую — разновесы, добиваясь равновесия весов. Затем на чашку с разновесами помещают взвешиваемое тело, а разновесы снимают до тех пор, пока вновь не установится равновесие. Масса снятых гирь будет равна массе тела. Этот метод позволяет исключить систематические погрешности, связанные с неравноплечностью весов и зависимостью их чувствительности от величины нагрузки.

Порядок выполнения работы:

1. С помощью линейки определить размеры исследуемого тела, необходимые для вычисления его объема. Каждый параметр измерить не менее пяти раз.

2. С помощью весов и разновесов определить массу тела. Взвешивание производить не менее пяти раз.

3. Все экспериментальные результаты занести в таблицу.

Обработка результатов измерений

1. По полученным экспериментальным данным находят средние значения линейных размеров и массы тела.

2. Используя средние значения замеренных параметров, вычисляют

плотность изучаемого тела.

3. Определяют абсолютную погрешность Δ ρ . Записывают окончательный результат измерения плотности тела, используя правила округления погрешностей и самой измеряемой величины.

Источник

Тема «Определение плотности твёрдых тел различными способами.»

Муниципальное бюджетное общеобразовательное учреждение лицей№4 города Данкова Липецкой области.

Секция естественных наук.

Исследовательский проект по физике на тему:

Определение плотности твёрдых тел различными способами.

Выполнили: ученицы 7г класса

Анохина Нина Алексеевна,

1) Агрегатные состояния вещества. стр.3

2) Строение твёрдых тел. стр.3

3) Анализ литературы. стр.3

4) Цель, объект, предмет, гипотеза, задачи, методы исследования проекта. стр.3

3.Основная часть. стр.4

1) Плотность вещества. стр.4

2) Формула расчёта плотности тела. стр.4

3) Определение плотности хозяйственного мыла. стр.4

4) Определение плотности апельсина. стр.5

5) Определение плотности камня. стр.5

6) Определение плотности пробки. стр.6

7) Определение плотности яблока. стр.6

8) Определение объёма тела человека по геометрической формуле. стр.6

9) Тайна золотой короны. стр.7

10) Определение объёма тела человека методом Архимеда. стр.8

11) Расчёт средней плотности тела человека. стр.8

12)Анализ полученных результатов. стр.8 4. Заключение . стр.9 5.Список используемой литературы. стр.10

6. Приложение 1 (Презентация).

На Земле нас окружают великое множество различных тел. Все они состоят из вещества. В зависимости от условий одно и то же вещество может находиться в различных состояниях: твёрдом, жидком или газообразном. Мы знаем, что молекулы одного и того же вещества в твёрдом, жидком и газообразном состоянии ничем не отличаются друг от друга. То или иное агрегатное состояние вещества определяется расположением, характером движения и взаимодействия молекул. Большинство окружающих нас предметов состоят из твёрдых веществ. Если рассматривать одно и то же вещество в разных агрегатных состояниях, то плотность его будет разной!

Плотность вещества зависит от массы атомов, из которых оно состоит, и от плотности упаковки атомов и молекул в веществе. Чем больше масса атомов, тем больше плотность. В твёрдых телах атомы прочно связаны друг с другом и очень плотно упакованы. Поэтому вещество, находящееся в твердом состоянии имеет наибольшую плотность. Твёрдые тела имеют свою форму и объём. Их можно разделить на две группы: на тела, имеющие правильную и неправильную геометрическую форму.

Нам захотелось узнать: как можно определить плотность твёрдых тел.

Познакомившись с научными статьями Тихомировой С.А., Перельмана Я.И., Хуторского А.В., Маслова И.С., и др., мы нашли некоторые ответы на наши вопросы.

Исходя из вышеизложенного, мы сформулировали цель проекта: исследовать зависимость массы тела от рода вещества и его объёма; выяснить физический смысл плотности.

Объектом нашего исследования являются твёрдые тела.

Предмет: постановка опытов по физике с использованием различных твёрдых тел.

Гипотеза: тело человека на 75% состоит из воды, т. к. их плотности мало отличаются друг от друга.

В соответствии с целью, объектом, предметом нами определены задачи проекта: 1. Проанализировать научную литературу по теме проекта.

2. Определить плотность твёрдых тел, имеющих правильную и неправильную геометрическую форму.

3. Определить плотность тела человека.

4. Разработать и воспроизвести физические опыты с твёрдыми телами.

В работе над проектом применялись следующие методы исследования:

1. Изучение литературы.

Измерить все, что поддается измерению,

а что не поддаётся — сделать измеряемым.

На уроках физики мы познакомились с физической величиной «плотность вещества». Плотность, по определению, — физическая величина, численно равная отношению массы тела к его объёму. Соответственно для её вычисления требуется измерить объём и массу тела. Плотность вещества зависит от массы атомов, из которых оно состоит, и от плотности упаковки атомов и молекул в веществе. Чем больше масса атомов, тем больше плотность. Плотность веществ обычно уменьшается с ростом температуры (из-за теплового расширения тел) и увеличивается с повышением давления. При переходе из одного агрегатного состояния в другое плотность тел изменяется . Единицей плотности в Международной системе единиц служит кг/м3. На практике применяют также следующие единицы: г/см3, г/л.

Плотность вещества равна отношению массы тела к объему этого тела.(Прил. 1. Слайд 3)

ρ — плотность, кг/м 3

m — масса тела, кг

V — объём тела, м 3

как видим, для определения плотности любого тела необходимо знать массу вещества (она определяется с помощью весов), и объем тела.

Если тело правильной геометрической формы, то его объем можно определить по математическим формулам.

Определение плотности куска хозяйственного мыла. (Прил.1 Слайд 4,5)

Необходимое оборудование: линейка, весы.

Кусок мыла имеет форму прямоугольного параллелепипеда. Объём прямоугольного параллелепипеда равен произведению площади основания на высоту. Линейкой измерили длину, ширину и высоту куска мыла: а=8,5см, в=5,7см, с=3см. По этим данным вычислили объём тела. V =авс. V = 8,5*5,7*3=145,35см3=0,000145м3. Массу мыла нашли с помощью весов. m =174гр=0,174 кг. По этим данным получили, что плотность мыла равна 1200 кг/м 3 .

Определение плотности апельсина. (прил.1 Слайд 6,7)

Необходимое оборудование: линейка, весы.

Мы взяли апельсин, имеющий форму шара. Его объём нашли по математической формуле:

,

где R -радиус апельсина. Для определения радиуса апельсина, мы его разрезали пополам и линейкой измерили расстояние от центра до кожуры.

R =3,2 см=0,032м. V =0,000137м3.

Массу апельсина определили на весах, m =150г=0,15кг. По нашим расчётам плотность апельсина равна 1095 кг/м 3

Если апельсин опустить в воду, то он будет тонуть т.к. его плотность больше плотности воды.

Определение плотности твердых тел неправильной формы.

Объем твердых тел неправильной формы не может быть подсчитан произведением данных, полученных при измерении таких параметров, как длина, ширина и т. д. Вместо этого может быть применен другой прием определения величины объёма, например вытеснение. Примерами твердых тел неправильной формы могут служить яблоко, камень, пробка, тело человека…

3. Определение плотности камня. (Прил. 1 Слайд 8)

Необходимое оборудование: линейка, весы, измерительный цилиндр (мензурка) с водой.

Измерительный цилиндр, размеры которого достаточны для помещения в него камня, наполнили частично водой. Отметили объем V1 воды в измерительном цилиндре. V1=180см3. Определили массу камня m при помощи весов. Затем привязали к камню нитку и осторожно опустили его в воду, чтобы он полностью погрузился в нее. Уровень воды поднялся и объем стал V2=194см3. Этот объем является суммарным объемом воды и камня. Следовательно, объем V камня определяется из формулы V = V2 — V1. V= 14см3=0,000014м3.

Объем используемой воды не изменился, но камень занял часть объема, который был заполнен водой, и поэтому уровень воды поднялся.

Массу камня определили на весах m =36,5г=0,0363кг.

Плотность подсчитали по формуле:

ρ= m / v ρ=2593 кг/м 3

Этот метод работает лишь для твердых тел, которые не растворяются в воде. Если в воду помещено растворимое твердое тело, то уровень воды может вообще не подняться. Молекулы этого твердого тела распределятся равномерно по объему и внедрятся в «пространство» между молекулами воды.

4.Определение плотности пробки. (Прил.1 Слайд 9,10) Для того чтобы определить объем V твердого тела, плавающего в воде, например пробки, мы к нему прикрепили грузило, которое обеспечивает полное погружение пробки. В мензурку налили воды. Затем прикрепили нить к грузилу и аккуратно опустили его в воду до полного погружения. Объем воды в измерительном цилиндре увеличился до V2 . Затем пробку отвязали и тем же методом определили объём V1 грузила. Объем V пробки нашли по формуле V = V2— V1, V=20см3=0,00002м3. Массу m пробки определили при помощи весов, m=4,9г= 0,0049кг. Таким образом, плотность пробки равна 245 кг/м 3

5. Определение плотности яблока.(Прил.1 Слайд 11,12,13)

Массу яблока определили на весах, она равна 120г или 0,12кг.

Объём тела с помощью мензурки определить нельзя, т. к. яблоко имеет размеры больше размеров мензурки. Для того чтобы определить объем твердого тела мы использовали отливной стакан. В воде яблоко плавает, поэтому мы подобрали такой отливной стакан, в который яблоко вошло с помощью небольших наших усилий.

Наполнили отливной стакан водой и дали ей вытечь так, чтобы уровень воды в сосуде находился точно на уровне стока. Поместили в стакан яблоко. Объем V1 яблока заставляет вытечь равный ему объем воды в сосуд. Объём вытесненной воды определили с помощью мензурки. Объем V1 воды в измерительном цилиндре равен объему яблока. V1= 150см3 или 0,00015м3 Массу m яблока нашли при помощи весов. m =120г или 0,12 кг. Таким образом, плотность яблока равна 800 кг/м 3

6. Определение плотности тела человека. Массу человека можно определить с помощью напольных весов.

Для определения объема тела человека мензурка не подходит, и мы рассмотрели несколько вариантов решения данной проблемы:

Первый вариант определения объёма тела человека (Прил.1 Слайд 14):

Можно смоделировать тело человека из геометрических фигур: голова – шар, руки, ноги -усеченные конусы, туловище – прямоугольный параллелепипед

и общий объем будет равен объемам

этот путь очень сложный и требует знания формул объема различных геометрических фигур и сложных математических расчетов.

Второй вариант определения объёма тела (Прил.1 Слайд 15):

На уроках физики мы изучали силу Архимеда. Учитель при объяснении нового материала рассказал легенду о тайне золотой короны. Мы решили объёмы наших тел измерить таким образом.

Тайна золотой короны. Около 2200 лет назад жил в Греции учёный, математик, философ по имени Архимед. Находился он при дворе царя Гиерона II. У царя была корона, которую он, когда требовалось для внушительности, возлагал на свою голову, появляясь перед подданными.

Однако, так уж устроены цари, ему не давала покоя мысль, что корона сделана не из чистого золота, а, значит, он, всемогущий повелитель, обманут золотых дел мастером и носит на голове подделку. Можно предполагать, что такой беспокойный царь, как Гиерон, сообразил взвесить золото перед тем, как отдавать его мастеру. Тогда нужно было лишь проверить массу готовой короны, чтобы узнать, не украл ли ювелир часть золота, Наверно, Гиерон так и сделал и обнаружил, что её масса точно совпадает с первоначальной массой золота.

Но Гиерон был догадливый, хотя и очень подозрительный человек. Можно представить себе как он рассуждал, следуя за возможными мыслями золотых дел мастера: «Я могу обмануть царя, присвоив небольшой кусочек золота, заменив его равной массой серебра, менее дорогого металла, и сплавив его с золотом. Сделаю всё так, чтобы масса короны была бы равна доверенной мне массе золота. А если золота украсть немного, то и вид короны не будет отличаться от золотой».

Такая возможность тревожила царя, поэтому он вызвал своего придворного учёного Архимеда и поручил ему провести следствие и выяснить, не было ли совершено описанным способом кражи.

Однажды Архимед размышлял над царским заданием, сидя в ванне. И вдруг, как утверждает легенда, решение задачи неожиданно пришло ему в голову. Говорят, он был так взволнован, что выскочил из ванны и пустился бежать по улицам своего родного города Сиракузы, крича «Эврика! Эврика!», что означает «Нашёл! Нашёл!».

А нашёл учёный не только способ выполнить задание царя, но и соотношение между силой, выталкивающей погруженный в жидкость предмет, и объёмом вытесненной им жидкости.

Архимед открыл и сформулировал в своём законе, что выталкивающая сила равна по величине силе тяжести, действующей на воду, вытесненную телом.

Закон Архимеда гласит: на тело, погружённое в жидкость, действует выталкивающая сила, направленная вверх и равная по модулю весу жидкости, которую вытесняет данное тело.

По этому методу мы 2/3 ванны наполнили водой и сделали отметку. При полном погружении человека в ванну уровень воды поднимается. Сделали вторую отметку. Воспользовавшись литровой банкой, и по разности уровней воды до погружения в ванну и после, определили объём тела.

Для определения плотности тела человека надо знать массу, которую определили с помощью напольных весов.

Результаты эксперимента (Прил.1 Слайд 16):

Источник

Читайте также:  Способы покрытия дефицита финансовых
Оцените статью
Разные способы