Как измерить силу электрического тока в цепи?
В процессе эксплуатации различного оборудования возникает необходимость проверки основных электрических параметров его работы. Это нужно как для проверки определенных характеристик, так и для ремонтных работ. Одним из наиболее сложных и опасных измерений является определение величины токовой нагрузки. Поэтому для всех начинающих электриков будет актуально узнать, как измерить силу электрического тока в цепи правильно и безопасно.
Используемые приборы
Измерить силу тока можно различными способами, однако далеко не все из них применимы в повседневной жизни. К примеру, различные измерительные трансформаторы, подключаемые в цепь, крайне неудобно переносить по дому и даже хранить на полке в гараже. Поэтому актуальными средствами измерительной техники являются амперметры, мультиметры и клещи. Далее рассмотрим детально особенности работы и применения каждого из них.
Амперметр
Это один из наиболее простых измерительных приборов, который реагирует на изменение токовой нагрузки. С электротехнической точки зрения амперметр представляет собой нулевой или бесконечно малое сопротивление. Поэтому в случае приложения напряжения только к прибору, в нем возникнет ток короткого замыкания, из-за чего амперметр включается в цепь последовательно замеряемой нагрузке. Для наглядности стоит пояснить, что измерить силу тока в розетке нельзя, так как без нагрузки (в случае разомкнутой цепи) ток в ней не протекает, на контактах розетки присутствует только напряжение, поэтому подключение амперметра напрямую приведет к замыканию.
Под электрическим током подразумевается направленное движение заряженных частиц, которое проходит через поперечное сечение проводника за определенную единицу времени. Поэтому запомните, что токовая нагрузка возникает лишь от включения бытового электроприбора к источнику питания. Включение амперметра отдельно к точке электроснабжения или отдельно к рабочему двухполюснику никоим образом не даст информации о силе тока. Если рассмотреть пример на схеме, то чтобы замерить амперы вы должны включить прибор в линию последовательно к объекту измерения:
Рис. 1. Пример подключения амперметра
Как видите, основная сложность заключается в том, что процесс измерения происходит непосредственно в момент протекания электрической энергии, соответственно, велика вероятность поражения электрическим током в случае нарушения технологии.
Чтобы избежать плачевных последствий, необходимо соблюдать такие правила:
- Подключение производится только при отсутствии напряжения;
- Измерительные провода должны быть заизолированы, а места подключения удалены от человека, при необходимости исключена возможность прикосновения к ним;
- Выведение амперметра из цепи измерения тока также выполняется при снятом напряжении.
Так как амперметр является узконаправленным прибором для измерения силы тока, его редко кто хранит у себя дома. Поэтому если вы хотите приобрести приспособление, куда выгоднее обзавестись мультиметром, который обладает значительно более широким функционалом.
Мультиметр
Этот прибор также называют тестером, Ц-эшкой, поэтому в обиходе можно встретить разные поколения мультиметра. Принцип использования мультиметра в качестве средства для измерения тока в цепи полностью аналогично амперметру, как по схеме включения, так и по предъявляемым мерам предосторожности. Однако следует отметить, что мультиметр мультиметру рознь, поэтому перед включением тестера обязательно посмотрите, подходит ли он, чтобы измерить ток в вашем случае.
Из конструктивных особенностей сразу отметим:
- Диапазон измерения – выставляется переключателем на определенную величину силы тока. Выбирается таким, чтобы предполагаемая нагрузка его не превышала, но была соизмеримой.
- Род тока – переменный или постоянный, заметьте, что некоторые модели мультиметров предоставляют возможность измерить только один вариант.
- Разделение на слаботочные и силовые измерения – такие приборы имеют отдельную шкалу на мА, мкА и отдельную для А. Также в них могут располагаться отдельные разъемы, чтобы подключить щупы.
- Наличие защиты от перегрузки при подключении измерительных устройств, обозначается отметкой unfused. Которая свидетельствует о наличии предохранителя, способного предотвратить выход со строя мультиметра от протекания чрезмерной силы тока.
По способу отображения информации все мультиметры подразделяются на циферблатные и дисплейные. Первые из них – довольно устаревшая модель, ориентироваться по ним смогут только искушенные электрики, знакомые с основами метрологии. Новичок же может запутаться в показаниях на шкале, цене деления или какими единицами измеряется нагрузка. Поэтому применение цифрового прибора куда проще и удобнее, на дисплее отображается конкретное число.
Токоизмерительные клещи
Это наиболее удобный прибор, так как чтобы измерить силу тока токоизмерительными клещами, нет нужды разрывать цепь. Конструктивно клещи представляют собой разъемный магнитопровод, в который и помещается проводник, на котором вы хотите померить силу тока. Токоизмерительные клещи имеют схожесть с тем же мультиметром, а в более продвинутых моделях вы встретите такой же переключатель с функцией определения мощности, напряжения, сопротивления, силы тока и разъемы для подключения щупов.
Как измерить силу тока в цепи
Для измерения электрического тока в цепи куда удобнее использовать современные устройства – мультиметры или клещи, особенно для одноразовых операций. А вот стационарный амперметр подойдет для тех ситуаций, когда вы планируете постоянно контролировать силу тока, к примеру, для контроля заряда батарейки или аккумулятора в автомобиле.
Постоянного тока
Разрыв электрической цепи организовывается до начала измерений при отключенном напряжении. Даже в низковольтных цепях вы можете вызвать замыкание батарейки, которое моментально приведет к потере электрического заряда. Далее рассмотрим пример измерения в цепи постоянного тока с помощью мультиметра, для этого:
Рис. 2. Использование мультиметра для измерения постоянного тока
- подключите щупы к соответствующим вводам в тестер – черный в COM, красный в разъем с пометкой mA, A или 10A, в зависимости от устройства;
- при помощи «крокодилов» соедините щупы тестера с цепью измерения последовательно;
- установите переключателем нужный род тока и предел измерений;
- можете подключить нагрузку и произвести измерения, на дисплее мультиметра отобразится искомое значение.
Но заметьте, подключать мультиметр следует на короткий промежуток времени, так как он может перегреться и выйти со строя.
Переменного тока
Цепь переменного напряжения может измеряться как мультиметром, так и токоизмерительными клещами. Но, в связи с опасностью переменного бытового напряжения для жизни человека, эту процедуру целесообразнее выполнять клещами без измерительных щупов и без разрыва цепи.
Рис. 3. Использование клещей для измерения переменного тока
Для этого вам нужно:
- переключить ручку в положение переменных токов на нужную позицию нагрузки, если она изначально неизвестна, то сразу выбирают максимальный диапазон;
- нажать боковую скобу, которая разомкнет клещи;
- поместить внутрь клещей токоведущую жилу и отпустить кнопку.
- данные измерений отобразятся на дисплее, при необходимости их можно зафиксировать соответствующей кнопкой.
Производить измерения можно как на изолированных, так и на оголенных жилах. Но заметьте, в область обхвата должен попадать только один проводник, сразу в двух измерить не получится.
Реальные примеры измерения тока
Далее рассмотрим несколько вариантов того, как подключить измерительный прибор в бытовых нуждах. При замерах батареек вам необходимо один щуп приложить к контакту батарейки, а второй к контакту нагрузки, второй контакт нагрузки подключается к свободной клемме батарейки.
Если вы хотите проверить токовую нагрузку в обмотках трехфазного электродвигателя, измерительный прибор подключается поочередно в каждую фазу или если у вас есть три амперметра, можете использовать их одновременно. Для этого щупы подключаются одним концом к выводам обмоток в борно, а вторым, к питающему проводу соответствующей фазы.
Источник
Способы измерения переменного электрического тока
- Вы здесь:
- Главная
- Уроки начинающим
- Часть2 — Переменный ток
- 1. Основы теории переменного тока
- 3. Измерение величин переменного тока
3. Измерение величин переменного тока
Измерение величин переменного тока
Вам уже известно, что переменное напряжение чередует свою полярность, а переменный ток чередует свое направление. Вы также знаете, что отследив чередование направлений переменного тока (полярностей переменного напряжения) во времени, можно построить график в виде «волны». А еще вы можете рассчитать скорость этих чередований (частоту), определив время одного периода волны.
Однако, вы до сих пор не знаете как определить величину переменного тока или напряжения. При работе с постоянным током (напряжением) таких проблем не возникает, так как его величина стабильна. Итак, каким образом можно измерить такую величину, которая постоянно меняется?
Один из способов решения этой проблемы состоит в измерении высоты пика на графике волны (см. рисунок ниже):
Другой способ состоит в измерении общей высоты между противоположными пиками (от пика до пика):
К сожалению, оба этих способа могут ввести в заблуждение при сравнении двух различных типов волн. Например, прямоугольная волна с пиком 10 вольт будет держать это напряжение в течение большего количества времени, чем треугольная волна с тем же самым пиком — 10 вольт. Воздействие этих двух напряжений на нагрузку будет различным (см. рисунок ниже) :
Одним из способов выражения амплитуды различных форм волны является математическое усреднение значений всех точек графика в единое , общее значение . Такая мера известна как среднее значение волны. Если все точки волны усреднить алгебраически (то есть, учесть их знак, положительный или отрицательный), то среднее значение для большинства волн окажется равным нулю, поскольку положительные точки полного цикла компенсируют отрицательные (см. рисунок ниже):
Это, конечно, будет справедливо для любой формы волны, имеющей равные части выше и ниже нулевой линии графика. Однако, на практике среднее значение волны определяется как математическое среднее всех точек ее цикла. Другими словами, среднее значение рассчитывается с учетом того, что в се точки имеют положительные значения (см. рисунок ниже):
Нечувствительные к полярности стрелочные измерительные приборы (одинаково реагирующие на положительные и отрицательные полупериоды переменного тока/напряжения) будут регистрировать практическое среднее значение волны, так как инерция стрелочного указателя (вызванная напряжением пружины) зафиксирует среднюю силу, создаваемую различными значениями тока/напряжения с течением времени. И наоборот, чувствительные к полярности стрелочные измерительные приборы будут «вибрировать» под воздействием переменного тока/напряжения, их стрелочный указатель будет быстро колебаться около нулевой отметки, показывая истинное (алгебраическое) среднее значение для симметричной волны. Упоминаемое далее в этой статье «среднее» значение волны мы будем соотносить именно с «практическим» средним значением, если не указано иное.
Другой способ получения общего значения амплитуды волны основывается на способности этой волны совершить полезную работу на сопротивлении нагрузки. К сожалению, такое измерение переменного тока/напряжения будет отличаться от «среднего» значения волны, так как мощность, рассеиваемая на заданной нагрузке (работа, выполненная за единицу времени), не прямо пропорциональна величине напряжения или тока. Мощность будет пропорциональна квадрату напряжения или тока, подаваемого на сопротивление (Р = E 2 / R, и P = I 2 R ) .
Давайте рассмотрим ленточную пилу и электролобзик — два типа современного деревообрабатывающего оборудования. Оба типа пил имеют тонкие зубчатые полотна, приводимые в движение электромоторами. Однако, ленточная пила использует непрерывное движение полотна, в то время как электролобзик — возвратно-поступательное. Сравнение переменного тока с постоянным можно уподобить сравнению этих двух типов пил:
Проблема описания величины переменной составляющей присутствует и в данной аналогии: каким образом можно выразить скорость движения полотна электролобзика? Полотно ленточной пилы движется с постоянной скоростью, что равноценно постоянному напряжению, величина которого всегда одинакова. Полотно же электролобзика движется взад-вперед, и скорость его движения постоянно меняется. Более того, возвратно-поступательные движения двух электролобзиков разной конструкции не могут быть одинаковыми. Движение полотна одного электролобзика может описываться формой синусоидальной волны, в то время как движение полотна другого лобзика — формой треугольной волны. Оценивать скорость движения полотна электролобзиков по пиковым значениям некорректно, у разных типов лобзиков эти значения будут разными. Несмотря на вышесказанное, все типы пил выполняют одну работу (пилят древесину), и количественное сравнение этой общей функции может служить основой для оценки скорости движения их полотна.
Давайте представим себе, что рядом друг с другом стоят две пилы: одна ленточная, а другая — электролобзик. Обе этих пилы имеют одинаковые полотна (одинаковый шаг зуба, угол и пр.), и в равной степени (с одинаковой скоростью) способны обрабатывать древесину одного и того же типа и одной и той же толщины. В данном случае мы можем сказать, что эти пилы эквивалентны, а их режущие способности (выполняемая работа) равны. Можно ли это сравнение использовать для выражения скорости возвратно-поступательного движения полотна электролобзика через скорость вращательного движения полтна ленточной пилы? Конечно можно! Эта же идея используется и для «назначения» эквивалента постоянного тока (напряжения) измеряемому переменному току (напряжению): одинаковые значения постоянного и переменного тока (напряжения) произведут одинаковое количество тепла на одном и том же сопротивлении (см. рисунок ниже):
Обе этих цепи имеют одинаковые сопротивления нагрузки (2 Ома), которые рассеивают одинаковое количество мощности (50 Вт) в виде тепла. Однако, первая цепь запитывается от источника переменного напряжения, а вторая — от источника постоянного напряжения. Поскольку источник переменного напряжения эквивалентен (с точки зрения мощности, подаваемой на нагрузку) 10 вольтовой батарее постоянного напряжения, мы назовем его «10 вольтовым» источником переменного напряжения. Для большей ясности мы обозначим его величину как 10 Вольт RMS. Аббревиатура RMS обозначает «Root Mean Square» или «Среднеквадратичное значение«. Алгоритм расчета среднеквадратического значения прост: каждое значение данных в течение предопределенного периода (обычно это один цикл) умножается само на себя (возведение в квадрат), а затем все такие значения в течение периода усредняются (суммируются с последующим делением на общее количество) и из полученного значения извлекается квадратный корень.
Измерение величины RMS используется в подавляющем большинстве случаев при работе с электричеством (является лучшим способом связи величины переменного напряжения/тока с величиной постоянного напряжения/тока, или с другими величинами переменного напряжения/тока, имеющими разные формы волн). Но, в некоторых случаях лучше использовать измерения от пика до пика. Например, при определении необходимого размера провод а, предназначенного для поставки электроэнергии от источника питания к нагрузке, лучше использовать измерение RMS величины тока, поскольку основное беспокойство у нас вызовет возможный перегрев провода, являющийся функцией рассеивания мощности при прохождении тока через сопротивление провода. Однако, при оценке изоляции высоковольтных проводов лучше всего использовать измерения от пика до пика, поскольку основное беспокойство в этом случае вызывает возможный «пробой» изоляции именно пиковыми значениями.
Измерение пиковых значений или значений от пика до пика лучше всего проводить при помощи осциллографа, который может захватить «гребни» волны с высокой степенью точности благодаря быстрому действию электронно-лучевой трубки в ответ на изменения напряжения. RMS измерения можно проводить аналоговыми измерительными приборами (гальванометрами конструкции д’Арсонваля/Уэстона, электромагнитными измерительными приборами, электродинамическими измерительными приборами), если они откалиброваны в RMS числах. Поскольку механическая инерция и демпфирующий эффект электромеханических измерительных приборов производят отклонение стрелки пропорционально среднему значению переменного тока/напряжения (а не среднеквадратичному), аналоговый прибор должен быть специально откалиброван для индикации напряжения или тока в RMS единицах. Точность этой калибровки зависит от предполагаемой формой волны , как правило, синусоиды.
Лучше всего для измерения RMS величин подходят специально разработанные электронные измерительные приборы. Некоторые производители приборов разработали оригинальные методы для определения RMS величины любой формы волны. Они производят приборы класса “True-RMS”, которые содержат крошечный резистивный нагревательный элемент, питаемый от напряжения пропорционального измеряемому. Тепловой эффект данного элемента измеряется термически , и дает истинное значение RMS. Математические вычисления здесь вообще не производятся, все основано на законах физики. Точность таких измерительных приборов не зависит от формы волны .
Для симметричных форм волн существуют простые коэффициенты преобразования между следующими видами значений: пиковым, от пика до пика (Peak-to-Peak или Р-Р), практическим средним (Average или AVG) и среднеквадратичным (RMS):
Помимо перечисленных выше значений переменного тока/напряжения существуют также значения, выражающие пропорциональность между некоторыми из этих фундаментальных измерений. Пик-фактор волны переменного тока , например, представляет собой отношение максимального (пикового) значения тока/напряжения к его среднеквадратичному (RMS) значению. Форм-фактор волны переменного тока/напряжения представляет собой отношение среднеквадратичного (RMS) значения к его практическому среднему значению. Пик-фактор и форм-фактор прямоугольной волны всегда равны 1, так как пиковое значение этой волны равно RMS и AVG значениям. Синусоидальная волна имеет RMS значение равное 0,707 и форм-фактор — 1,11 (0.707/0.636). Треугольная волна имеет RMS значение равное 0,577 и форм-фактор — 1,15 (0.577/0.5).
Имейте в виду , что все вышеописанные преобразования распространяются только на симметричные (правильные) формы волн . RMS и среднее значение искаженных форм волн не связаны теми же соотношениями :
Это очень важная для понимания концепция . Если вы используете аналоговый измерительный прибор, откалиброванный под синусоидальные RMS значения, то он будет точен только при измерении «чистой» синусоиды. В ходе измерения других типов волн он будет выдавать вам не истинное RMS значение.
Так как синусоидальная форма волны является самой распространенной в электрических измерениях, именно под нее и калибруется подавляющее большинство аналоговых измерительных приборов. Примите во внимание, что это ограничение касается только простых аналоговых приборов, и ни как не распространяется на приборы с технологией “True-RMS”.
Источник