Способы измерения информации при использовании содержательного подхода
Измерение информации: содержательный и алфавитный подходы. Единицы измерения информации.
Вопрос: «Как измерить информацию?» очень непростой. Ответ на него зависит от того, что понимать под информацией. Но поскольку определять информацию можно по-разному, то и способы измерения тоже могут быть разными.
Содержательный подход к измерению информации.
Для человека информация — это знания человека. Рассмотрим вопрос с этой точки зрения.
Получение новой информации приводит к расширению знаний. Если некоторое сообщение приводит к уменьшению неопределенности нашего знания, то можно говорить, что такое сообщение содержит информацию.
Отсюда следует вывод, что сообщение информативно (т.е. содержит ненулевую информацию), если оно пополняет знания человека. Например, прогноз погоды на завтра — информативное сообщение, а сообщение о вчерашней погоде неинформативно, т.к. нам это уже известно.
Нетрудно понять, что информативность одного и того же сообщения может быть разной для разных людей. Например: «2×2=4» информативно для первоклассника, изучающего таблицу умножения, и неинформативно для старшеклассника.
Но для того чтобы сообщение было информативно оно должно еще быть понятно. Быть понятным, значит быть логически связанным с предыдущими знаниями человека. Определение «значение определенного интеграла равно разности значений первообразной подынтегральной функции на верхнем и на нижнем пределах», скорее всего, не пополнит знания и старшеклассника, т.к. оно ему не понятно. Для того, чтобы понять данное определение, нужно закончить изучение элементарной математики и знать начала высшей.
Получение всяких знаний должно идти от простого к сложному. И тогда каждое новое сообщение будет в то же время понятным, а значит, будет нести информацию для человека.
Сообщение несет информацию для человека, если содержащиеся в нем сведения являются для него новыми и понятными.
Алфавитный подход к измерению информации.
А теперь познакомимся с другим способом измерения информации. Этот способ не связывает количество информации с содержанием сообщения, и называется он алфавитным подходом.
При алфавитном подходе к определению количества информации отвлекаются от содержания информации и рассматривают информационное сообщение как последовательность знаков определенной знаковой системы.
Все множество используемых в языке символов будем традиционно называть алфавитом. Обычно под алфавитом понимают только буквы, но поскольку в тексте могут встречаться знаки препинания, цифры, скобки, то мы их тоже включим в алфавит. В алфавит также следует включить и пробел, т.е. пропуск между словами.
Полное количество символов алфавита принято называть мощностью алфавита. Будем обозначать эту величину буквой N. Например, мощность алфавита из русских букв и отмеченных дополнительных символов равна 54.
При алфавитном подходе к измерению информации количество информации зависит не от содержания, а от размера текста и мощности алфавита.
При использовании двоичной системы (алфавит состоит из двух знаков: 0 и 1) каждый двоичный знак несет 1 бит информации. Интересно, что сама единица измерения информации «бит» получила свое название от английского сочетания «binary digit» — «двоичная цифра».
1 бит — это минимальная единица измерения информации!
Один символ алфавита «весит» 8 бит. Причем 8 бит информации — это настолько характерная величина, что ей даже присвоили свое название — байт.
Сегодня очень многие люди для подготовки писем, документов, статей, книг и пр. используют компьютерные текстовые редакторы. Компьютерные редакторы, в основном, работают с алфавитом размером 256 символов.
В любой системе единиц измерения существуют основные единицы и производные от них.
Для измерения больших объемов информации используются следующие производные от байта единицы:
Источник
Способы измерения информации при использовании содержательного подхода
Вопрос: «Как измерить информацию?» очень непростой. Ответ на него зависит от того, что понимать под информацией. Но поскольку определять информацию можно по-разному, то и способы измерения тоже могут быть разными.
Содержательный подход к измерению информации.
Для человека информация — это знания человека. Рассмотрим вопрос с этой точки зрения.
Получение новой информации приводит к расширению знаний. Если некоторое сообщение приводит к уменьшению неопределенности нашего знания, то можно говорить, что такое сообщение содержит информацию.
Отсюда следует вывод, что сообщение информативно (т.е. содержит ненулевую информацию), если оно пополняет знания человека. Например, прогноз погоды на завтра — информативное сообщение, а сообщение о вчерашней погоде неинформативно, т.к. нам это уже известно.
Нетрудно понять, что информативность одного и того же сообщения может быть разной для разных людей. Например: «2×2=4» информативно для первоклассника, изучающего таблицу умножения, и неинформативно для старшеклассника.
Но для того чтобы сообщение было информативно оно должно еще быть понятно. Быть понятным, значит быть логически связанным с предыдущими знаниями человека. Определение «значение определенного интеграла равно разности значений первообразной подынтегральной функции на верхнем и на нижнем пределах», скорее всего, не пополнит знания и старшеклассника, т.к. оно ему не понятно. Для того, чтобы понять данное определение, нужно закончить изучение элементарной математики и знать начала высшей.
Получение всяких знаний должно идти от простого к сложному. И тогда каждое новое сообщение будет в то же время понятным, а значит, будет нести информацию для человека.
Сообщение несет информацию для человека, если содержащиеся в нем сведения являются для него новыми и понятными.
Очевидно, различать лишь две ситуации: «нет информации» — «есть информация» для измерения информации недостаточно. Нужна единица измерения, тогда мы сможем определять, в каком сообщении информации больше, в каком — меньше.
Единица измерения информации была определена в науке, которая называется теорией информации. Эта единица носит название «бит». Ее определение звучит так:
Например, после сдачи зачета или выполнения контрольной работы ученик мучается неопределенностью, он не знает, какую оценку получил. Наконец, учитель объявляет результаты, и он получаете одно из двух информационных сообщений: «зачет» или «незачет», а после контрольной работы одно из четырех информационных сообщений: «2», «3», «4» или «5».
Информационное сообщение об оценке за зачет приводит к уменьшению неопределенности знания в два раза, так как получено одно из двух возможных информационных сообщений. Информационное сообщение об оценке за контрольную работу приводит к уменьшению неопределенности знания в четыре раза, так как получено одно из четырех возможных информационных сообщений.
Рассмотрим еще один пример.
На книжном стеллаже восемь полок. Книга может быть поставлена на любую из них. Сколько информации содержит сообщение о том, где находится книга?
Применим метод половинного деления. Зададим несколько вопросов уменьшающих неопределенность знаний в два раза.
Задаем вопросы:
— Книга лежит выше четвертой полки?
— Нет.
— Книга лежит ниже третьей полки?
— Да .
— Книга — на второй полке?
— Нет.
— Ну теперь все ясно! Книга лежит на первой полке!
Каждый ответ уменьшал неопределенность в два раза.
Всего было задано три вопроса. Значит набрано 3 бита информации. И если бы сразу было сказано, что книга лежит на первой полке, то этим сообщением были бы переданы те же 3 бита информации.
Если обозначить возможное количество событий, или, другими словами, неопределенность знаний N, а буквой I количество информации в сообщении о том, что произошло одно из N событий, то можно записать формулу:
Количество информации, содержащееся в сообщении о том, что произошло одно из N равновероятных событий, определяется из решения показательного уравнения: 2 I = N.
Пример: Вы бросаете монету, загадывая, что выпадет: орел или решка?
Решение: Есть два варианта возможного результата бросания монеты. Ни один из этих вариантов не имеет преимущества перед другим (равновероятны). Перед подбрасыванием монеты неопределенность знаний о результате равна двум.
После совершения действия неопределенность уменьшилась в 2 раза. Получили 1 бит информации.
Ответ: Результат подбрасывания монеты принес 1 бит информации.
Источник
Информатика. 10 класс
Конспект урока
Информатика, 10 класс. Урок № 2.
Тема — Подходы к измерению информации
Перечень вопросов, рассматриваемых в теме: Информация как снятая неопределенность. Содержательный подход к измерению информации.
Информация как последовательность символов некоторого алфавита. Алфавитный подход к измерению информации. Единицы измерения информации. Понятие больших данных
Глоссарий по теме: Информатика, информация, свойства информации (объективность, достоверность, полнота, актуальность, понятность, релевантность), виды информации, информационные процессы, информационная культура, информационная грамотность.
Основная литература по теме урока:
Л. Л. Босова, А. Ю. Босова. Информатика. Базовый уровень: учебник для 10 класса — М.: БИНОМ. Лаборатория знаний, 2017
Дополнительная литература по теме урока:
И. Г. Семакин, Т. Ю. Шеина, Л. В. Шестакова. Информатика и ИКТ. Профильный уровень: учебник для 10 класса — М.: БИНОМ. Лаборатория знаний, 2012
Теоретический материал для самостоятельного изучения:
Давайте составим план, что бы мы хотели сделать с имеющейся у нас информацией.
Передавать — скорее всего, а может быть даже и продавать.
Обрабатывать и получать новую — вполне возможно!
Во всех трех случаях, которые называют основными информационными процессами, нам нужно информацию измерять.
В случае хранения, чтобы быть уверенными, что объем хранилища и объем нашей информации соответствуют друг другу, в передаче или продаже — чтобы объем продажи соответствовал цене, в случае обработки, чтобы рассчитать время, за которое этот объем может быть обработан.
Во всех трех случаях мы говорим о соответствиях объемов, но если нам известно как вычислить объем хранилища в м 3 , количество денег в рублях или иной валюте, время, то с вычислением объема информации нужно разбираться
Целью нашего урока будет определить способы измерения информации и сравнить их.
Для этого нужно будет определить:
— от чего зависит объем информации,
— какими единицами ее измерять.
Выявлять различия в подходах к измерению информации.
Применять различные подходы для измерения количества информации.
Переходить от одних единиц измерения информации к другим.
Предположим, что объем информации зависит от ее содержания. Нам нужна информация, которая для нас нова и понятна, соответствует всем свойствам информации, то есть та, которая приносит нам новые знания, решает наши вопросы.
Тут минимальным количеством информации будет ответ «да» или «нет». Ответ на такой простой вопрос принесет нам минимум информации и уменьшит неопределенность в два раза. Было два варианта, мы выбрали один и получили минимум информации — 1 бит.
Этот подход к измерению предложил К. Шеннон.
Информация (по Шеннону) — это снятая неопределённость. Величина неопределённости некоторого события — это количество возможных результатов (исходов) данного события. Сообщение, уменьшающее неопределённость знания в 2 раза, несёт 1 бит информации. Количество информации (i), содержащееся в сообщении об одном из N равновероятных результатов некоторого события, определяется из решения уравнения: 2i = N. Такой подход к измерению информации называют содержательным.
Разумно так же предположить, что текст, который для вас не понятен, понятен кому-то другому, то есть информация в нем все-таки есть. А ее объем зависит не от содержания текста, а от символов, которыми он написан. Назовем алфавитом все множество символов, используемых в языке, а их количество — мощностью алфавита.
Каждый символ, выбранный из алфавита, несет количество информации (i), вычисленное по формуле,
где N мощность алфавита.
Общее количество информации (I) во всем тексте можно посчитать по простой математической модели:
где k — количество символов в тексте.
Такой подход к измерению информации называют алфавитным. Здесь объем информации зависит от используемого алфавита и количества символов в тексте.
Этот подход к измерению информации предложил советский ученый-математик А. Н. Колмогоров.
Бит — мельчайшая единица информации. Для кодировки каждого из 256 символов, сведенных в таблицу кодировки ASCII, требуется 8 бит. Эта величина получила отдельное название — байт. Помимо бита и байта существуют более крупные единицы. Традиционно они получили приставки Кило, Мега, Гига и т. д.
Но Кило в единицах измерения информации обозначает не 10 3 =1000, а 2 10 =1024. Это недоразумение решается с конца XX века. Международная электротехническая комиссия предложила приставки «киби-, меби-, гиби-», которые лучше отражают смысл кратности степеням двойки.
Переводить единицы измерения информации можно при помощи удобной схемы
Определив подходы и единицы измерения, перейдем к оценкам. Сколько информации содержит книга? Библиотека? Видеоролик? Много? Это конечно, можно посчитать по уже известным нам простым формулам, а вот оценить «много» или «мало» не удастся, потому что это не количественные категории.
Сегодня существует понятие «большие данные». Так называют социально-экономический феномен, связанный с появлением технологических возможностей анализировать огромные массивы данных. Эти технологические возможности стремительно развиваются и уже позволяют компьютерам узнавать нас на фото, советуют нам какую музыку слушать и какие книги читать. Такси безошибочно находит нас в большом городе и проходит тестирование беспилотный транспорт.
Объемы данных, которыми оперирует человечество, исчисляется единицами зеттабайт, это единицы и 61 «0», к 2020 году по прогнозам это будет 40—44 зеттабайтов, а 2025 возрастет в 10 раз. Данные станут жизненно-важным активом, а их безопасность — критически важным вопросом.
Информацию можно измерять. Для этого существуют разные подходы, содержательный подход, алфавитный подход.
Суть содержательного подхода в том, что при определении объема информации учитывается содержание информации. Она должна быть новой и понятной получателю.
Суть алфавитного подхода в определении количества информации в зависимости от алфавита, которым она записана. А объем подсчитывается по формуле
где — объем информации,
— количество символов в сообщении,
— количество информации о каждом символе.
Для измерения количества информации в объеме данных используются единицы измерения информации.
Обработка данных важна для всех сфер жизни. Технологии обработки данных стремительно развиваются и становятся жизненно-важными.
Источник