Измерение ЭДС источника тока различными методами
Измерение ЭДС источника тока различными методами
Одним из необходимых условий существования электрического тока в цепи является наличие источника тока.
Роль источника тока в электрической цепи, образно говоря, такая же, как роль насоса, который необходим для перекачивания жидкости в гидравлической системе. Под действием создаваемого поля сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему на концах цепи поддерживается разность потенциалов и в цепи течет постоянный электрический ток.
Внутри любого источника тока совершается работа по разделению разноимённых зарядов и накапливанию их на полюсах, в результате чего создаётся и поддерживается электрическое поле.
В быту «источником тока» часто неточно называют любой источник электрического напряжения (батарею, генератор, розетку), но в строго физическом смысле это не так. Более того, обычно используемые в быту источники электроэнергии по своим характеристикам гораздо ближе к источнику ЭДС, чем к источнику тока
Механический источник тока — механическая энергия преобразуется в электрическую энергию.
К ним относятся: электрофорная машина (диски машины приводятся во вращение в противоположных направлениях. В результате трения щеток о диски на кондукторах машины накапливаются заряды противоположного знака), динамо-машина, генераторы.
Тепловой источник тока — внутренняя энергия преобразуется в электрическую энергию.
Например, термоэлемент — две проволоки из разных металлов необходимо спаять с одного края, затем нагреть место спая, тогда между другими концами этих проволок появится напряжение.
Применяются в термодатчиках и на геотермальных электростанциях.
Световой источник тока — энергия света преобразуется в электрическую энергию.
Например, фотоэлемент — при освещении некоторых полупроводников световая энергия превращается в электрическую. Из фотоэлементов составлены солнечные батареи.
Применяются в солнечных батареях, световых датчиках, калькуляторах, видеокамерах.
Химический источник тока — в результате химических реакций внутренняя энергия преобразуется в электрическую.
Например, гальванический элемент — в цинковый сосуд вставлен угольный стержень. Стержень помещен в полотняный мешочек, наполненный смесью оксида марганца с углем. В элементе используют клейстер из муки на растворе нашатыря. При взаимодействии нашатыря с цинком, цинк приобретает отрицательный заряд, а угольный стержень — положительный заряд. Между заряженным стержнем и цинковым сосудом возникает электрическое поле. В таком источнике тока уголь является положительным электродом, а цинковый сосуд — отрицательным электродом.
Из нескольких гальванических элементов можно составить батарею.
Источники тока на основе гальванических элементов применяются в бытовых автономных электроприборах, источниках бесперебойного питания.
Аккумуляторы — в автомобилях, электромобилях, сотовых телефонах.
Магнитогидродинамический генератор (МГД — генератор) — энергетическая установка, в которой энергия рабочего тела (жидкой или газообразной электропроводящей среды), движущегося в магнитном поле, преобразуется непосредственно в электрическую энергию
Принцип работы МГД-генератора, как и обычного машинного генератора, основан на явлении электромагнитной индукции, то есть — на возникновении тока в проводнике, пересекающем силовые линии магнитного поля. В отличие от машинных генераторов проводником в МГД-генераторе является само рабочее тело.
Рабочее тело движется поперёк магнитного поля, и под действием магнитного поля возникают противоположно направленные потоки носителей зарядов противоположных знаков.
Сторонние силы — силы неэлектрической природы, вызывающие перемещение электрических зарядов внутри источника постоянного тока. Сторонними считаются все силы отличные от кулоновских сил, т. е.
любые силы, действующие на электрически заряженные частицы, за исключением сил электростатического происхождения (кулоновские силы), называются сторонними силами.
Внутри источника тока заряды движутся под действием сторонних сил против кулоновских сил (электроны движутся от положительного заряженного электрода к отрицательному), а во всей остальной цепи их приводит в движение электрическое поле.
Природа сторонних сил может быть разнообразна. В генераторах электростанций сторонняя сила – сила, действующая со стороны магнитного поля на электроны в движущемся проводнике. В гальваническом элементе сторонними силами являются химические силы. Например, элемент Вольта состоит из цинкового и медного электродом, помещенных в раствор серной кислоты. Химические силы вызывают растворение цинка в кислоте. В раствор переходят положительно заряженные ионы цинка, а сам цинковый электрод при этом заряжается отрицательно. Между цинковым и медным электродами появляется разность потенциалов, которая обуславливает ток в замкнутой электрической цепи.
В электрофорной машине сторонними сила являются силы трения.
В МГД сила Лоренца, действующая со стороны магнитного поля на движущиеся заряды.
Действие сторонних сил характеризуется важной физической величиной, называемой электродвижущей силой (ЭДС).
Электродвижущая сила (ЭДС) — физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура.
Методы определения ЭДС источника тока.
Прямой метод измерения ЭДС.
Собирая цепь по схеме:
Мы непосредственно измерили ЭДС источника тока при разомкнутом ключе. При замкнутом ключе вольтметр показал напряжение на внешнем участке цепи. Используя закон Ома для полной цепи, было рассчитано внутреннее сопротивление источника тока. Измерения проводились для трех батарей элементов.
Результаты измерения приведены в таблице №1:
Источник
Лабораторная работа «Измерение ЭДС и внутреннего сопротивления источника тока» (11 класс)
«Измерение ЭДС и внутреннего сопротивления источника тока»
Преподаватель Виноградов А.Б.
Цель работы: сформировать умение определения ЭДС и внутреннего сопротивления источника тока с помощью амперметра и вольтметра.
Оборудование: выпрямитель ВУ-4М, амперметр, вольтметр, соединительные провода, элементы планшета №1: ключ, резистор R 1 .
Внутреннее сопротивление источника тока.
При прохождении тока по замкнутой цепи, электрически заряженные частицы перемещаются не только внутри проводников, соединяющих полюса источника тока, но и внутри самого источника тока. Поэтому в замкнутой электрической цепи различают внешний и внутренний участки цепи. Внешний участок цепи составляет вся та совокупность проводников, которая подсоединяется к полюсам источника тока. Внутренний участок цепи — это сам источник тока. Источник тока, как и любой другой проводник, обладает сопротивлением. Таким образом, в электрической цепи, состоящей из источника тока и проводников с электрическим сопротивлением R , электрический ток совершает работу не только на внешнем, но и на внутреннем участке цепи. Например, при подключении лампы накаливания к гальванической батарее карманного фонаря электрическим током нагреваются не только спираль лампы и подводящие провода, но и сама батарея. Электрическое сопротивление источника тока называется внутренним сопротивлением. В электромагнитном генераторе внутренним сопротивлением является электрическое сопротивление провода обмотки генератора. На внутреннем участке электрической цепи выделяется количество теплоты, равное
(1)
где r — внутреннее сопротивление источника тока.
Полное количество теплоты, выделяющееся при протекании постоянного тока в замкнутой цепи, внешний и внутренний участки которой имеют сопротивления, соответственно равные R и r , равно
. (2)
Всякую замкнутую цепь можно представить как два последовательно соединенных резистора с эквивалентными сопротивлениями R и r . Поэтому сопротивление полной цепи равно сумме внешнего и внутреннего сопротивлений: . Поскольку при последовательном соединении сила тока на всех участках цепи одинакова, то через внешний и внутренний участок цепи проходит одинаковый по величине ток. Тогда по закону Ома для участка цепи падение напряжений на ее внешнем и внутреннем участках будут соответственно равны:
и
(3)
Полная работа сил электростатического поля при движении зарядов по замкнутой цепи постоянного тока равна нулю. Следовательно, вся работа электрического тока в замкнутой электрической цепи оказывается совершенной за счет действия сторонних сил, вызывающих разделение зарядов внутри источника и поддерживающих постоянное напряжение на выходе источника тока. Отношение работы , совершаемой сторонними силами по перемещению заряда q вдоль цепи, к значению этого заряда называется электродвижущей силой источника (ЭДС)
:
, (4)
где — переносимый заряд.
ЭДС выражается в тех же единицах, что и напряжение или разность потенциалов, т. е. в вольтах: .
Закон Ома для полной цепи.
Если в результате прохождения постоянного тока в замкнутой электрической цепи происходит только нагревание проводников, то по закону сохранения энергии полная работа электрического тока в замкнутой цепи, равная работе сторонних сил источника тока, равна количеству теплоты, выделившейся на внешнем и внутреннем участках цепи:
. (5)
Из выражений (2), (4) и (5) получаем:
. (6)
Так как , то
, (7)
. (8)
Сила тока в электрической цепи прямо пропорциональна электродвижущей силе источника тока и обратно пропорциональна сумме электрических сопротивлений внешнего и внутреннего участков цепи. Выражение (8) называется законом Ома для полной цепи.
Таким образом, с точки зрения физики Закон Ома выражает закон сохранения энергии для замкнутой цепи постоянного тока.
Подготовка к выполнению работы.
Перед вами на столах находится минилаборатория по электродинамике. Её вид представлен в л. р. № 9 на рисунке 2.
Слева находятся миллиамперметр, выпрямитель ВУ-4М, вольтметр, амперметр. Справа закреплен планшет № 1 (см. рис. 3 в л. р. № 9). В задней секции корпуса размещаются соединительные провода цветные: красный провод используют для подключения ВУ-4М к гнезду «+» планшета; белый провод — для подключения ВУ-4М к гнезду «-»; желтые провода — для подключения к элементам планшета измерительных приборов; синие — для соединения между собой элементов планшета. Секция закрыта откидной площадкой. В рабочем положении площадка располагается горизонтально и используется в качестве рабочей поверхности при сборке экспериментальных установок в опытах.
В ходе работы вы освоите метод измерения основных характеристик источника тока, используя закон Ома для полной цепи, который связывает силу тока I в цепи, ЭДС источника тока , его внутреннее сопротивление r и сопротивление внешней цепи R соотношением:
. (9)
Схема экспериментальной установки показана на рисунке 1.
Внимательно изучите её. При разомкнутом ключе В источник замкнут на вольтметр, сопротивление которого много больше внутреннего сопротивления источника ( r R ). В этом случае ток в цепи настолько мал, что можно пренебречь значением падения напряжения на внутреннем сопротивлении источника , и ЭДС источника с пренебрежимо малой погрешностью равна напряжения на его зажимах
, которое измеряется вольтметром, т.е.
. (10)
Таким образом, ЭДС источника определяется по показаниям вольтметра при разомкнутом ключе В.
Если ключ В замкнуть, вольтметр покажет падение напряжения на резисторе R :
. (11)
Тогда на основании равенств (9), (10) и (11) можно утверждать, что
(12)
Из формулы (12) видно, что для определения внутреннего сопротивления источника тока необходимо, кроме его ЭДС, знать силу тока в цепи и напряжение на резисторе R при замкнутом ключе.
Силу тока в цепи можно измерить при помощи амперметра. Проволочный резистор изготовлен из нихромовой проволоки и имеет сопротивление 5 Ом.
Соберите цепь по схеме, показанной на рисунке 3.
После того, как цепь будет собрана, необходимо поднять руку, позвать учителя, чтобы он проверил правильность сборки электрической цепи. И если цепь собрана правильно, то приступайте к выполнению работы.
При разомкнутом ключе В снимите показания вольтметра и занесите значение напряжения в таблицу 1. Затем замкните ключ В и опять снимите показания вольтметра, но уже
и показания амперметра. Занесите значение напряжения и силы тока в таблицу 1.
Вычислите внутреннее сопротивление источника тока.
, В
, В
, В
Сначала соберите экспериментальную установку, изображенную на рисунке 2.
Измерьте силу тока в цепи при помощи амперметра, результат запишите в тетрадь. Сопротивление резистора
=5 Ом. Все данные заносятся в таблицу 2.
Теперь соберите экспериментальную установку, изображенную на рисунке 3.
Измерьте силу тока в цепи при помощи амперметра, результат запишите в тетрадь. Сопротивление резистора
=20 Ом.
, А
, Ом
, А
, Ом
, В
Применив закон Ома для полной цепи для каждого случая, получаем систему двух уравнений с двумя неизвестными:
Решая её относительно неизвестных и r , находим значения этих величин.
Сравните полученные результаты в первом и во втором случае. Сделайте вывод.
Внешний и внутренний участки цепи.
Какое сопротивление называются внутренним? Обозначение.
Чему равно полное сопротивление?
Дайте определение электродвижущей силы (ЭДС). Обозначение. Единицы измерения.
Сформулируйте закон Ома для полной цепи.
Если бы мы не знали значения сопротивлений проволочных резисторов, то можно ли было бы использовать второй способ и что для этого надо сделать (может нужно, например, включить в цепь какой-нибудь прибор)?
Уметь собирать электрические цепи, используемые в работе.
Кабардин О. Ф.. Справ. Материалы: Учеб. Пособие для учащихся.—3-е изд.—М.:Просвещение,1991.—с.:150-151.
Справочник школьника. Физика/ Сост. Т. Фещенко, В. Вожегова.–М.: Филологическое об-щество «СЛОВО», ООО «Фирма» «Издательство АСТ», Центр гуманитарных наук при ф-те журна-листики МГУ им. М. В. Ломоносова, 1998. — с.: 124,500-501.
Самойленко П. И.. Физика (для нетехнических специальностей): Учебн. для общеобразоват. учреждений сред. Проф. Образования/ П. И.Самойленко, А. В. Сергеев.—2-е изд., стер.—М.: Издательский центр «Академия», 2003-с.: 181-182.
Источник