Способы измерения длины дуги меридиана

Способы измерения длины дуги меридиана

2. Величина земного шара

Всем известен школьный глобус. Это — модель Земли, на которой нанесены материки, моря, океаны, горные хребты, реки.

Определить длину окружности глобуса совсем нетрудно: стоит лишь обернуть его лентой, разделённой на сантиметры. Но обмерить Землю таким способом нельзя, нужно найти какой-то другой способ. Для этого обратимся опять к глобусу.

На глобусе нанесены линии — меридианы, проходящие через полюсы. Каждый меридиан разделён на 360 градусов. Если измерить длину градуса, то легко вычислить и длину всей окружности глобуса. Предположим, что часть меридиана на глобусе, равная 20 градусам, будет иметь длину 5 сантиметров, тогда один градус будет равен 1 /4 сантиметра, а вся окружность глобуса — 1 /4 · 360 = 90 сантиметрам. Таким образом, не обмеряя всей окружности глобуса, можно вычислить её длину.

Таким же путём можно вычислить и длину окружности земного шара.

Для этого нужно прежде всего найти способ наметить на поверхности Земли дугу меридиана в один или несколько градусов. А определив её длину, легко будет вычислить и окружность Земли.

Направление меридиана на земной поверхности наметить не трудно, наблюдая суточное движение Солнца.

Начиная с момента восхода, Солнце поднимается всё выше. Так продолжается до тех пор, пока оно не пересечёт воображаемую вертикальную плоскость, проходящую вдоль меридиана данного места.

Этот момент — полдень. Солнце находится в полдень на наибольшей высоте. Далее оно начнёт медленно спускаться к точке захода.

Наблюдая за движением Солнца по небу, можно определить направление на него в момент наибольшей высоты над горизонтом, то-есть направление меридиана.

Теперь представьте себе, что на одном и том же меридиане стоят два наблюдателя на расстоянии согни или более километров друг от друга.

Полдень для обоих наступит в один и тот же момент. Но высота Солнца над горизонтом или, другими словами, угол между солнечным лучом и плоскостью горизонта, будет различна: чем южнее стоит наблюдатель, тем она больше.

Например, пусть один наблюдатель находится в Ленинграде, а другой в Киеве. Эти города лежат почти точно на одном меридиане, дуга которого между ними равна примерно 10 градусам. Если оба наблюдателя измеряют в полдень одного и того же дня высоту Солнца над горизонтом, то окажется, что в Киеве оно будет приблизительно на 10 градусов выше.

В течение года высота Солнца, как известно, меняется. Но в какой бы день ни измерить высоту его в полдень в этих городах, разница будет одна — около 10 градусов.

Значит, разница высот полуденного Солнца в двух пунктах, лежащих на одном меридиане, равна числу градусов дуги меридиана между ними.

Этим и пользуются при определении размеров Земли.

В двух пунктах, лежащих на одном меридиане, измеряют в один и тот же день в полдень высоту Солнца. По разности его высоты находят, сколько градусов заключается в дуге меридиана между этими пунктами.

Теперь остаётся только измерить расстояние между ними в километрах. Но тут возникают большие затруднения.

Попробуйте точно измерить расстояние между двумя деревьями, находящимися даже в нескольких километрах одно от другого. Это очень трудно, так как между ними могут быть различные неровности почвы — холмы, долины, овраги. А длина дуги меридиана измеряется сотнями километров.

Как же выходят из этого затруднения учёные?

Первое определение размеров Земли было сделано ещё в древности греческим учёным Эратосфеном, жившим в III веке до нашей эры в египетском городе Александрии. Занимаясь астрономическими наблюдениями, он измерил летом, в 20-х числах июня, полуденную высоту Солнца.

Из рассказов водителей торговых караванов учёный знал, что в эти дни в более южном городе — Сиене — Солнце заглядывает в полдень на самое дно глубоких колодцев, то-есть стоит там прямо над головой, или, как говорят, в зените.

Разница в высоте Солнца в Александрии и Сиене оказалась немного больше 7 градусов. Значит, и отрезок меридиана между этими городами также заключает в себе приблизительно 7 градусов, что составляет около 1 /50 длины окружности (рис. 2).

Рис. 2. Солнечные лучи, освещающие дно колодца в Сиене, в Александрии составляют с вертикальной линией угол, равный 7 градусам 12 минутам.

Теперь нужно было только узнать, каково же расстояние между этими городами. Но измерить его Эратосфен не мог. Ему пришлось поверить на слово водителям караванов, что от Александрии до Сиены 5000 египетских стадий [1] .

После этого было уже нетрудно подсчитать, что окружность Земли составляет около 5000 · 50 = 250 000 стадий, что приблизительно равно 37 500 километрам. Это измерение было довольно точным. Как мы увидим далее, окружность Земли равна почти 40 000 километров.

После Эратосфена измерение Земли производилось многими другими учёными. Так например, в IX веке два арабских учёных-астронома измерили длину одного градуса меридиана на плоской равнине в Месопотамии (в Малой Азии).

Выбрав пункт начала измерений, они определили высоту Полярной звезды. Затем один из них двинулся на юг, а другой на север.

Помощники учёных измеряли деревянными шестами пройденное расстояние, а сами учёные с наступлением ночи определяли высоту Полярной звезды.

Измерение высоты Полярной звезды астрономом, шедшим к северу, показывало, что эта звезда постепенно становилась выше над горизонтом. Шедший же к югу видел, что эта звезда, наоборот, снижается.

Когда высота Полярной звезды по измерению обоих астрономов изменилась на 1 градус, учёные остановились. Каждый из них прошёл длину дуги в 1 градус. Значит, оба вместе измерили дугу в 2 градуса.

Однако и такое определение длины земной окружности было неточным. Ведь дорога, по которой шли астрономы, не была совершенно гладкой.

Лишь в XVII веке был найден способ точного измерения дуг меридиана. Этот способ заключался в том, что вдоль дуги меридиана, по обе стороны от нее, выбирают ряд таких пунктов, чтобы из каждого было видно не менее двух других. Если мысленно соединить эти пункты линиями, то получится сеть треугольников, покрывающая дугу меридиана (рис. 3).

Рис. 3. Определив величину углов треугольников и длину базиса, можно вычислить все стороны воображаемых треугольников и длину дуги меридиана АЖ.

Зная длину сторон и величину углов этих треугольников, можно вычислить и длину дуги меридиана.

Измерение углов этих треугольников не представляет затруднений. Их измеряют очень точно угломерным инструментом.

Более трудная задача — измерение длины сторон треугольников На учёные и здесь нашли выход. Измеряется только одна из самых коротких сторон какого-либо треугольника на ровной местности, так называемый «базис», связанный с сетью треугольников. Длина остальных сторон просто вычисляется.

После этого определяется вычислением и длина дуги меридиана. Таким способом можно измерять с большой точностью даже очень длинные дуги Этот способ получил название триангуляции.

Измерение дуг меридиана позволило найти неизменную единицу длины, за которую была принята одна десятимиллионная часть четверти меридиана, проходящего через Париж. Эта единица была названа метром.

Градусное измерение для определения длины метра было предпринято в 90-х годах XVIII века по распоряжению французского революционного правительства.

Полевые работы велись в разгар революции и последовавших после неё войн. Всеми работами руководил известный французский астроном Деламбр. Во время этих работ пришлось преодолеть множество трудностей. Была измерена дуга парижского меридиана от Дюнкерка на севере до острова Форментеры на юге.

Этим измерением и была определена длина одной десятимиллионной четверти парижского меридиана.

Образец метра был изготовлен в нескольких экземплярах, которые хранятся в странах, принявших метрическую систему мер.

В XIX веке, пользуясь таким способом, русские учёные измерили очень длинную дугу меридиана.

К концу XVIII века в России началось составление географических карт, основой которых служит триангуляционная сеть. Другими словами, чтобы нанести на карту положение рек, озёр, селений, лесов и других объектов, нужно предварительно покрыть снимаемую местность сетью треугольников. Такая работа и велась широко в конце XVIII и в начале XIX веков в России. Триангуляционная сеть позволяла измерить длинную дугу меридиана.

Мысль о таком измерении возникла у известного русского астронома В. Я. Струве, работавшего в 1813 году на обсерватории в г. Юрьеве (ныне Тарту, Эстонской ССР).

Этому учёному было предложено сделать триангуляционную съёмку Эстонии. Работа по съёмке была закончена в течение 1816–1819 годов.

Позднее триангуляционная съёмка была продолжена Струве до острова Гогланда в Финском заливе и далее на север до Торнео. Одновременно с этим такая же съёмка производилась и к югу от Эстонии — вплоть до Дуная, Связав эти съёмки, можно было определить дугу меридиана длиной более 20 градусов. Это и было сделано.

Позднее измеренную дугу меридиана удалось ещё удлинить, соединив сделанную съёмку с триангуляцией, произведённой от Торнео до берегов Баренцова моря.

Всё измерение дуги от Баренцова моря до Дуная было завершено в 1855 году. На концах этой дуги, заключающей более 25 градусов, были установлены гранитные столбы и чугунные призмы на каменном фундаменте, увековечившие память о гигантской работе, проделанной русскими учёными по определению размеров Земли. Это измерение дуги меридиана было одним из точнейших в мире.

Однако, как мы уже говорили, Земля — не вполне правильный шар. К такому выводу учёные пришли не на основании измерений градуса меридиана. Их навело на эту мысль вращение Земли.

Примечания:

Егигетская стадия равнялась примерно 0,15 км.

Источник

Определение расстояний и размеров тел в Солнечной системе

Урок 14. Астрономия 11 класс ФГОС

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока «Определение расстояний и размеров тел в Солнечной системе»

Вы уже знаете, что ещё в Древней Греции учёными и мыслителями было установлено, что наша планета не является плоской, а имеет шарообразную форму. Представление о Земле как о шаре, который свободно, без всякой опоры находится в космическом пространстве, является одним из величайших достижений древнего мира.

Первый известный науке метод определения размеров Земли применил греческий учёный Эратосфен, живший в Египте. Его идея была достаточно проста. Итак, Эратосфен выбрал два города — Александрию и Сиену (ныне Асуан) — расположенных на одном земном меридиане.

Далее он обозначил длину дуги меридиана между двумя городами через l, а её угловое значение в градусах как п.

Тогда длина дуги в 1 о выбранного меридиана равна

С другой стороны, он знал, что длина окружности равна: L = 2πR.

Приравняв правые части последних двух уравнений, легко получить искомый радиус земного шара:

Теперь было необходимо определить длину дуги меридиана в градусной мере. Очевидно, что она равна разности географических широт Александрии и Сиены. Так вот, чтобы определить эту разность Эратосфен придумал хитрый способ. Он знал, что в полдень дня летнего Солнцестояния в Сиене Солнце находится в зените и освещает дно самых глубоких колодцев. А в Александрии Солнце до зенита не доходит. Поэтому шест, вбитый вертикально в землю должен отбрасывать тень. Измерив длину этой тени можно легко определить искомую длину дуги меридиана, которая у Эратосфена оказалась равной 7,2 о .

Ну а расстояние между Александрией и Сиеной ему было хорошо известно: оно составляло пять тысяч греческих стадий.

Подставив все данные в формулу для длины окружности меридиана, Эратосфен получил значение в 250 000 стадий.

Стадий — это весьма неоднозначная единица измерения расстояния. Но, как правило, за стадий принимали расстояние, которое проходит легковооружённый воин за промежуток времени от появления первого луча солнца при его восходе до того момента, когда весь солнечный диск окажется над горизонтом.

Однако если учесть, что расстояние между Александрией и Асуаном по прямой примерно равно 844 километрам, то можно полагать, что одна стадия примерно равна 169 метрам.

Тогда искомая длина всей окружности меридиана равна 42 250 километрам, что совсем не плохо для того времени.

Современная наука располагает более точными способами измерения расстояний на земной поверхности. Одним из них является метод триангуляций, основанный на явлении параллактического смещения.

Параллактическое смещение — это изменение направления на предмет при перемещении наблюдателя. С его помощью можно измерить расстояние на основе измерения длины одной из сторон (базиса) и двух прилегающих к ней углов в треугольнике.

Суть метода триангуляций состоит в следующем. По обе стороны дуги, длину которой нужно измерить, выбирается несколько точек на расстоянии не более 50 километров друг от друга, на которых устанавливаются геодезические вышки. При этом из каждой точки должны быть видны по крайней мере две другие точки. Далее тщательным образом измеряется длина базиса (с точностью до одного миллиметра). После этого с вершины вышки при помощи теодолита измеряются углы между направлениями на два-три соседних пункта. Измерив углы в треугольнике, одной из сторон которого является базис, геодезисты получают возможность вычислить длину двух других его сторон по известным тригонометрическим формулам. Проводя затем измерение углов из пунктов, расстояние между которыми уже вычислено, можно узнать длину очередных двух сторон и так далее. Затем, по вычисленным сторонам, определяется искомая длина дуги.

В XVIII веке использование триангуляционных измерений в экваториальных широтах и вблизи северного полярного круга, показало, что длина дуги в 1 о меридиана не одинакова и увеличивается к полюсам. Из этого следовало, что наша планета не является идеальным шаром и её полярный радиус почти на 21 километр короче экваториального. Поэтому в геодезии и форму Земли считают геоидом, то есть телом с поверхностью, близкой к поверхности спокойного океана и продолженной под материками.

В настоящее время форму Земли принято характеризовать следующими физическими характеристиками:

· полярное сжатие — 0,0033528;

· экваториальный радиус — 6378,1 км;

· полярный радиус — 6356,8 км;

· средний радиус — 6371,0 км;

· и длина окружности экватора — 40 075,017 км.

Долгое время загадкой для многих астрономов являлось истинное расстояние от Земли до Солнца. Измерить его смогли лишь во второй половине XVIII века, когда был впервые определён горизонтальный параллакс Солнца. По сути дела, при этом измеряется параллактическое смещение объекта, находящегося за пределами Земли, а базисом является её радиус.

Горизонтальным параллаксом называется угол, под которым со светила виден радиус Земли, перпендикулярный лучу зрения.

Зная горизонтальный параллакс светила, можно, по известным тригонометрическим соотношениям, определить его расстояние от центра Земли:

Очевидно, что чем дальше расположено светило, те меньше его горизонтальный параллакс. Например, наибольший параллакс, в среднем 57ʹ, имеет спутник Земли — Луна. У Солнца он значительно меньше и примерно составляет 8,794ʹʹ. Такому параллаксу соответствует среднее расстояние от Земли до Солнца, примерно равное 149,6 миллиона километров.

На одном из прошлых уроков мы говорили о том, что это расстояние в астрономии принимается за одну астрономическую единицу. С её помощью удобно измерять расстояния между телами в Солнечной системе.

Но вернёмся к нашей формуле. Итак, из геометрии вам должно быть известно, что при малых значениях угла его синус примерно равен самому углу, выраженному в радианах. Если учесть, что в одном радиане содержится 206 265ʹʹ, то легко можно получить формулу, удобную для вычислений:

Для примера, давайте с вами определим расстояние от Земли до Юпитера в момент противостояния, если его горизонтальный параллакс был равен 2,2ʹʹ. Радиус Земли примем равным 6371 километру.

Эту же задачу можно было решить несколько иначе.

В настоящее время для более точного определения расстояний до тел в Солнечной системе применяется более точный метод измерений — радиолокационный. Измерив время, необходимое для того, чтобы радиолокационный импульс достиг небесного тела, отразился и вернулся на Землю, вычисляют расстояние до этого тела по формуле:

где с — это скорость света в вакууме.

С разработкой методов определения расстояний до тел в Солнечной системе учёным не составило большого труда придумать и способ определения их размеров. В частности, при наблюдениях небесного тела Солнечной системы с Земли можно измерить угол, под которым оно видно наблюдателю, то есть его угловой размер (или угловой диаметр), а, следовательно, и угловой радиус.

А зная угловой радиус и расстояние до светила, можно вычислить его линейный радиус:

.

Только в этой формуле угловой радиус должен быть выражен в радианах.

Если в записанное уравнение подставить формулу для определения расстояний методом горизонтального параллакса и упростить её, используя тот факт, что значения углов ρ и р малы, то получим формулу, по которой можно определять линейные размеры небесных тел:

Но помните, пользоваться ей можно тогда, когда видны диски светил.

Для примера давайте решим с вами такую задачу. При наблюдении прохождения Меркурия по диску Солнца определили, что его угловой радиус равен 5,5’’, а горизонтальный параллакс — 14,4’’. Чему равен линейный радиус Меркурия?

Источник

Читайте также:  Креон инструкция способы применения
Оцените статью
Разные способы