Вот говорят: «Толщиной с человеческий волос». А какова она – толщина волоса? Можно ли её измерить?Или, как говорят физики, оценить, в том случае, если измерения нельзя выполнить с высокой точностью. Или, допустим, можно ли измерить толщину нитки?
2.Другие х – файлы
Возможны и другие задачи. Можно ли обычной линейкой измерить:
а) толщину страницы учебника;
б) диаметр горошины или пшена;
в) толщину тонкой проволоки?
Смотрите об этом презентацию и при затруднениях читайте текст.
Не поискать ли мнетропы иной,
Приёмов новых,сочетаний странных?
«Ну, и причём здесь Шекспир?» — наверное, подумали Вы? Но …
Шекспир справедливо отметил, что когда наши познания и житейский опыт не могут решить наши проблемы, надо искать другие способы решения. Как правило, какой-нибудь метод, да и отыщется!
3.А мне это надо?
А мне это надо? – спросите Вы. Как знать? Допустим, для шитья используются нитки разной толщины. Она указывается номером на катушке. Причём нитки №10 толще, чем нитки №20.
Для изготовления некоторых элементов электрической цепи необходимо знать толщину проволоки. Для печати книг, газет и журналов используется бумага разной толщины.
А ещё надо просто научиться решать практические задачи, чтобы получать хорошие отметки и сдать экзамен по физике.
4.Истина где-то рядом
Прямые измерения размеров малых или тонких тел невозможны по той причине, что измеряемые величины соизмеримы или даже меньше цены деления используемого прибора. Одним из способов измерения размеров малых тел является, так называемый, метод рядов. Этот метод основан на принципе суммирования длин (масс, объёмов) одинаковых элементов, образующих тело в целом.
Высота стопки одинаковых книг равна сумме высот отдельных книг в этой стопке: h = n · h₀
Толщина (высота) одной книги, в этом случае, равна: h₀ = h : n
Где:n– кол-во книг;h₀— высота одной книги.
Задача 1. Определить диаметр шарика (бусины).
Обозначим диаметр буквой d. Это и будет размером малого тела, то есть его наибольшей шириной.
Сложность этой задачи заключается в размерах тел, которые такого же порядка, как и цена деления линейки. Диаметр шариков составляет несколько миллиметров и цена деления 1 мм. Это значит, что погрешность такого измерения очень большая. В этом случае лучше применить не прямое измерение диаметра шарика, а косвенное, с использованием метода рядов.
В ряд укладываем несколько шариков. Измеряем длину ряда линейкой и делим её на количество шариков в ряду. Точность косвенных измерений диаметра шарика при таком способе будет значительно выше, чем при прямом измерении линейкой.
Длина ряда: l= 5 см = 50 мм Количество шариков в ряду: n = 7
Диаметр шарика: d= 50 мм: 7 = 7, 1428… мм ≈ 7, 14 мм = 7, 14 · 10 -3 м
Задача 2. Найти диаметр бусины на нитке.
В этом случае задача упрощается. Достаточно плотно сдвинуть некоторое количество бусин на нитке. Расположить этот участок нити вдоль линейки. А затем выполнить прямые и косвенные измерения.
Длина участка нити: l= 6 см = 60 мм Количество бусин: n= 10
Диаметр бусины: d= 60 мм : 10 = 6 мм = 6,0 · 10 -3 м
Задача 3.Определить диаметр тонкой проволоки.
Для решения этой задачи достаточно взять карандаш и намотать на него некоторое количество витков проволоки. Дальнейшие измерения и вычисления аналогичны.
Длина ряда из витков: l= 2 см = 20 мм Количество витков: n= 10
Диаметр (толщина) проволоки: d= 20 мм : 10 = 2 мм = 2 · 10 -3 м
Оформление результатов
Результаты измерений лучше представлять в виде таблицы. Это удобно для косвенных измерений. А также в случае проведения однотипных измерений для разных тел.
Обычно (если нет особых указаний) практические задачи выполняются с точностью до двух значащих цифр после запятой: 7,1428… мм ≈ 7,14 мм .
Результаты измерений могут быть и такого вида: 6,00 мм. Такой вид записи показывает, что вычисления также выполнены с точностью до сотых. А число либо разделилось без остатка, и дольных значений нет, либо остаток меньшего порядка (тысячные, десятитысячные и т.д.).
Погрешность измерений будет уже не 0,5 мм, а в 7 (0,07 мм) и 10 (0,05 мм) раз меньше. И чем больше малых элементов в ряду, тем меньше погрешность измерений.
5. Территория экспериментов
Теперь можно решать практические задачи. В отличие от лабораторных работ, практические задачи не содержат указаний и бланк отчёта необходимо приготовить самому учащемуся. Примеры практических задач:
1. Определить толщину листа учебника физики.
2. Определить толщину нитки в катушке.
3. Определить объём одной капли воды.
Для оформления отчёта одной таблицы мало, надо знать Как составить отчёт по практической работе.
В презентации к уроку есть пример решения задачи и задание для рефлексии.
А если у Вас остались ещё вопросы – спрашивайте на форуме или на страницеFQ. Или пишите на электронную почту.
Источник
способ измерения диаметра тонких протяженных нитей
Классы МПК:
G01B11/08 для измерения диаметров
Автор(ы):
Чугуй Юрий Васильевич (RU) , Яковенко Николай Андреевич (RU) , Ялуплин Михаил Дмитриевич (RU)
Патентообладатель(и):
Конструкторско-технологический институт научного приборостроения СО РАН (КТИ НП СО РАН) (RU)
Приоритеты:
Способ измерения диаметра тонких протяженных нитей включает освещение нитей источником света, прием дифракционного изображения нитей путем регистрации интенсивности экстремальных точек дифракционной картины и его последующую обработку с вычислением диаметра нити. Прием дифракционного изображения нитей осуществляют путем регистрации интенсивности экстремальных точек дифракционной картины, возникающей в результате интерференции проходящей волны света с дифрагированной волной, соответствующей дифракции Фраунгофера. Обработку дифракционного изображения производят путем нахождения контраста дифракционной картины с вычислением диаметра по формуле
где I — контраст дифракционной картины, — длина волны света, используемого источника освещения, L — расстояние от источника света до фотоприемника, s — расстояние между главными максимумами дифракционной картины. Освещение объекта производят точечным монохроматическим источником света. Освещение объекта производят протяженным квазимонохроматическим источником света. Технический результат — повышение точности измерения способа, особенно в части измерения сверхтонких нитей при одновременном упрощении его реализации в заводских условиях. 2 з.п. ф-лы, 3 ил.
Формула изобретения
1. Способ измерения диаметра тонких протяженных нитей, включающий освещение нитей источником света, прием дифракционного изображения нитей путем регистрации интенсивности экстремальных точек дифракционной картины и его последующую обработку с вычислением диаметра нити, отличающийся тем, что прием дифракционного изображения нитей осуществляют путем регистрации интенсивности экстремальных точек дифракционной картины, возникающей в результате интерференции проходящей волны света с дифрагированной волной, соответствующей дифракции Фраунгофера, а обработку дифракционного изображения производят путем нахождения контраста дифракционной картины с вычислением диаметра по формуле
где I — контраст дифракционной картины, — длина волны света используемого источника освещения, L — расстояние от источника света до фотоприемника, s — расстояние между главными максимумами дифракционной картины.
2. Способ по п.1, отличающийся тем, что освещение объекта производят точечным монохроматическим источником света.
3. Способ по п.1, отличающийся тем, что освещение объекта производят протяженным квазимонохроматическим источником света.
Описание изобретения к патенту
Изобретение относится к контрольно-измерительной технике, а именно к оптическим бесконтактным методам измерения диаметра тонких протяженных непрозрачных объектов, и может быть использовано при создании приборов для контроля тонких и сверхтонких нитей и, например, для контроля диаметра нитей накаливания осветительных ламп.
В настоящее время при производстве нити накаливания осветительной лампы остро стоит задача за контролем отклонения ее диаметра от номинального размера. Это связано с тем, что при утончении нити лампа обеспечивает пониженную световую отдачу (мощность), но при этот удлиняется срок эксплуатации, а при ее утолщении — склонна к быстрому перегоранию и не обеспечивает заданный срок эксплуатации.
Диапазон измеряемых значений толщин нитей лежит от 8-10 микрон до 100-150 микрон, при этом погрешность измерения не должна превышать 0.7%. Разрабатываемые измерительные системы для решения данной задачи должны быть достаточно компактными и легко встраиваемыми в различные линии производства. Такие системы не должны зависеть от внешних факторов, таких как пыль, фоновые засветки и др.
Известен способ бесконтактного определения толщины нити, основанный на дифракционном методе измерения, включающем источник монохроматического (точечного) освещения, Фурье-звено для формирования дифракционного изображения объекта и фотоприемник для его регистрации (см. а.с. СССР №1357701, кл. G01В 11/08, 1987 г.).
Основными недостатками указанного способа являются, во-первых, необходимость применения высокоточной дорогостоящей Фурье-оптики, что требует сложных операций настройки и юстировки, во-вторых, чувствительность к таким факторам, как пыль и незначительные загрязнения оптических компонент и, наконец, недостаточно высокая точность измерения при контроле непрозрачных объектов малого диаметра вследствие влияния нулевого порядка дифракции. В последнем случае имеют место наложения «хвостов» нулевого порядка на информативный сигнал, уровень интенсивности которого в окрестности первых порядков дифракции оказывается заметно ниже уровня «хвостов» нулевого порядка, что не только затрудняет определение положения экстремумов дифракционной картины объекта с приемлемой точностью, но даже приводит к потере информативного сигнала. Это приводит к необходимости использования при обработке изображения более дальних дифракционных порядков, амплитуда которых, однако, может быть порядка амплитуды высокочастотного шума, что заметно снижает точность и диапазон измерения.
Кроме того, известный способ сложно применять в заводском производстве. Это связано с тем, что данный измеритель имеет неудовлетворительные массогабаритные показатели, что вызывает определенные трудности при встраивании указанного устройства в линии производства, например, нитей.
Наиболее близким к заявляемому техническому решению (прототипом) является способ бесконтактного определения толщины непрозрачной нити, основанный на теневом методе измерения, включающем источник монохроматического (точечного) освещения и многоэлементный фотоприемник для регистрации дифракционного изображения контролируемого объекта и последующую обработку этого изображения с вычислением диаметра нити по известному пороговому алгоритму (см. европейский патент №0924493, кл. G01B 11/08, 1999 г.).
Основными недостатками известного способа являются, во-первых, невысокая точность измерения, которая зависит от точности определения коэффициента геометрического увеличения при пространственном перемещении объекта и порогового уровня положения краев объекта. Во-вторых, невозможность измерения известным способом тонких нитей диаметром от 100 мкм и менее, т.к. известно, что у измерительных систем, базируемых на анализе дифракционных картин Френелевского типа, нижний диапазон составляет порядка зоны Френеля, значение которой для нормальной работы измерителя (расстояние между объектом и источником света z=15 мм) порядка 100 мкм. Следует особо отметить, что в этом случае значительно повышается погрешность измерения, что обусловлено взаимодействием дифракционных изображений краев контролируемого объекта.
Кроме того, указанные системы требуют ввода дополнительного ортогонального канала для регистрации пространственных перемещений контролируемого объекта для ввода поправки на коэффициент геометрического увеличения, что приводит к значительному росту габаритов измерителя. Также этот способ чувствителен к таким факторам, как пыль и всевозможные загрязнения, что ограничивает его применение в промышленных условиях или требует ввода дополнительных средств, необходимых для очистки системы и защиты оптического тракта.
Технической задачей настоящего изобретения является устранение указанных недостатков, а именно повышение точности измерения способа, особенно в части измерения сверхтонких нитей при одновременном упрощении его реализации в заводских условиях.
Указанная задача в способе измерения диаметра тонких протяженных нитей, включающем освещение объекта источником света, прием дифракционного изображения объекта путем регистрации его дифракционной картины многоэлементным фотоприемником и ее последующую обработку с вычислением диаметра нити, решена тем, что прием дифракционного изображения объекта осуществляют путем регистрации интенсивности экстремальных точек дифракционной картины, возникающей в результате интерференции проходящей волны света с дифрагированной волной, соответствующей дифракции Фраунгофера, а обработку сигнала производят путем нахождения контраста дифракционной картины с вычислением диаметра по следующей формуле:
где I=(I max -I min )/(I max +I min ) — контраст дифракционной картины, — длина волны света, используемого источника освещения, L — расстояние от источника света до фотоприемника, s — расстояние между главными максимумами дифракционной картины.
Благодаря использованию интерференционно-дифракционной картины, соответствующей интерференции прошедшей волны света с волной, дифрагированной на объекте, удалось существенно повысить точность измерения за счет повышения соотношения сигнал-шум и снизить более чем в десять раз нижнюю границу диапазона измерения, т.к. в заявляемом способе проводится анализ контраста дифракционной картины, а не пороговых координат.
Для упрощения реализации способа в лабораторных условиях в качестве источника освещения объекта используют точечный монохроматический источник света.
Для исключения влияния внешних условий на точность измерения в качестве источника освещения объекта используют протяженный квазимонохроматический источник света (частично-когерентное освещение), который позволяет производить пространственную фильтрацию изображения соответствующим выбором угловых размеров источника излучения, значение которых задается диафрагмой и тем самым отрывает возможность для применения способа метода в заводских условиях.
Заявляемый способ позволяет производить высокоточные измерения диаметров сверхтонких нитей в широком измерительном диапазоне при достаточно простой оптической схеме, не требующей ввода дополнительных, вспомогательных элементов, что не имеет аналогов среди оптических бесконтактных методов измерения диаметров, а следовательно, соответствует критерию «изобретательский уровень».
Указанное выполнение способа позволяет существенно повысить точность измерения и снизить более чем в десять раз нижнюю границу диапазона измерения, что не имеет аналогов среди известных дифракционных способов контроля тонких нитей, а значит, соответствует критерию «изобретательский уровень».
На фиг.1 приведен рисунок устройства, поясняющего реализацию способа при монохроматическом освещении.
На фиг.2 приведен рисунок устройства, поясняющий реализацию способа при квазимонохроматическом (частично-когерентном) освещении.
На фиг.3 приведен рисунок типичной дифракционной картины, соответствующей указанному способу. Структуры дифракционных картин при монохроматическом точечном и квазимонохроматическом протяженном освещениях, в случае незначительных угловых размеров источника излучения, практически не различимы.
Устройство для реализации заявляемого способа содержит источник монохроматического точечного света 1, измеряемый объект 2, многоэлементный фотоприемник 5 и блок обработки измерительной информации 6.
Устройство (см.фиг.2) дополнительно содержит осветитель 7, содержащий источник квазимонохроматического света, диффузор 8, диафрагму 9.
Устройство (см. фиг.1) работает следующим образом. Пучок света от монохроматического точечного источника света 1 освещает контролируемое изделие 2. Вследствие дифракции света на объекте 2 на многоэлементном фотоприемнике 5 формируется дифракционная картина, представленная на фиг.3, которая возникает вследствие интерференции дифрагированной волны света 4 с проходящей волной света 3. Получаемое изображение объекта регистрируется фотоприемником 5 и поступает в блок обработки измерительной информации 6.
Устройство, представленное на фиг.2, работает аналогичным образом. Сфокусированный пучок света от источника 7 попадает на диффузор, на котором происходит рассеяние света, при этом диафрагма 9 выступает в качестве источника света, облучающего контролируемый объект 2, дифракционное изображение которого регистрируется многоэлементным фотоприемником 5 и поступает в блок обработки измерительной информации 6. Использование диффузора позволяет получить равномерный по пространству пучок света. Свет с диффузора 8 проецируется на диафрагму 9 (см.фиг.2), раскрытием которой задаются угловые размеры источника излучения. Это позволяет, в сравнении с теневым и дифракционным способами, производить пространственную фильтрацию оптического сигнала, при наличии пыли или других факторов.
Пример 1. На установке, представленной на фиг.1, габаритные размеры которой составили 180 мм × 50 мм × 50 мм, на расстоянии 40 мм от точечного источника монохроматического света (полупроводниковый лазер марки LDPM 12-655-3 с длиной волны =0.65 мкм) устанавливалась аттестованная вольфрамовая нить диаметром 13 мкм. Дифракционное изображение (фиг.3), формируемое вследствие интерференции дифрагируемой и проходящей волн света, регистрировалось многоэлементным линейным фотоприемником — ПЗС линейкой марки Toshiba TCD1304AP с размером пиксела 8 мкм × 200 мкм, расположенной на расстоянии 110 мм от контролируемого объекта. Расчет диаметра нити производился согласно формуле (1). При этом значения параметров системы составили I 0.1, L=150 мм, x 1.4 мм. Погрешность измерения не превысила 0.1 мкм.
Пример 2. На установке, представленной на фиг.2, габаритные размеры которой составили 200 мм × 50 мм × 50 мм, на расстоянии 50 мм от протяженного источника на базе светодиода (Paralight EP2012-150G1 длина волны =0.525 мкм), формируемого посредством ввода диффузора (матовый рассеватель) и прямоугольной диафрагмы с размером пропускающего отверстия 50 мкм, устанавливалась аттестованная вольфрамовая нить диаметром 88 мкм. Контроль нити осуществлялся в измерительном объеме 10×10 мм 2 . Дифракционное изображение (фиг.3), формируемое вследствие интерференции дифрагируемой и проходящей волн света, регистрировалось многоэлементным линейным фотоприемником — ПЗС линейкой (Toshiba TCD1304AP с размером пиксела 8 мкм × 200 мкм), расположенной на расстоянии 130 мм от контролируемого объекта. Расчет диаметра нити производился согласно формуле (1). При этом значения параметров системы составили I 0.7, L=180 мм, x 1.2 мм. Погрешность измерения не превысила 0.15 мкм.
Таким образом, заявляемый способ является наиболее применимым для контроля нитей накаливания в процессе их производства.