- Определение геометрических параметров, прогибов и деформации конструкции
- Ознакомление с особенностями процессов обследования строительных конструкций. Определение погрешности измерений в процессе геодезического контроля точности геометрических параметров. Рассмотрение структуры прогибомера. Изучение схемы измерения прогибов.
- Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
- Подобные документы
- Измерение деформаций
- Понятие и виды деформаций тел. Классификация тензометров и особенности тензодатчиков. Сущность пьезоэффекта и его параметры. Условия осуществления оптимальной конструкции пьезоэлектрического преобразователя. Характеристика тензорезисторного датчика М50.
- Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Определение геометрических параметров, прогибов и деформации конструкции
Ознакомление с особенностями процессов обследования строительных конструкций. Определение погрешности измерений в процессе геодезического контроля точности геометрических параметров. Рассмотрение структуры прогибомера. Изучение схемы измерения прогибов.
Рубрика | Строительство и архитектура |
Вид | практическая работа |
Язык | русский |
Дата добавления | 23.09.2018 |
Размер файла | 90,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Тема: «Определение геометрических параметров, прогибов и деформации конструкции»
Специальность: 270802 «Строительство и эксплуатация зданий и сооружений»
ПМ04 «Организация видов работ при эксплуатации и реконструкции строительных объектов»
МДК04.01 Эксплуатация зданий
1. Определение геометрических параметров, прогибов и деформаций конструкций
2. Обмерные работы
3. Измерения прогибов и деформаций
1. Определение геометрических параметров, прогибов и деформаций конструкций
Процессы обследования строительных конструкций включает работы, имеющие общую методику проведения, характерные практически для всех видов конструкций.
Состав и количество обмерных работ устанавливаются на этапе предварительного обследования и зависят от задач обследования, наличия проектной документации, проведенных ранее реконструкций здания и отдельных конструкций и т.п.
Обмерами определяются конфигурация, размеры, положение в плане и по вертикали конструкции и их элементов. Должны быть проверены основные параметры конструктивной схемы здания: длины пролетов, высоты колонн, сечения конструкций, узлы опирания балок и другие геометрические размеры, от величины которых зависит напряжённо — деформированное состояние элементов конструкции.
При проведении обмерных работ положение основных линий, углов и отметок, от которых производится измерение, должно определяться геодезической съемкой с применением теодолита, нивелира и других средств измерения в соответствии с требованием нормативных документов.
Погрешность измерений в процессе геодезического контроля точности геометрических параметров зданий должна быть не более 0,2 величины отклонений, допускаемых строительными нормами и правилами, государственными стандартами или проектной документацией.
Для обмеров отдельных конструкций и их элементов используется рулетки, деревянные складные рейки с нанесенными на них делениями, наборы металлических линеек и угольников разной длины, штангенциркули, уровни, отвесы и другие.
Обмерные чертежи выполняются в масштабе 1:100, чертежи фрагментов и узлов — в масштабе от 1:50 до 1:5.
В процессе натурных обследований результаты обмеров наносятся на предварительно подготовленные копии рабочих чертежей проекта здания или на эскизы для последующего изготовления обмерных чертежей.
Размеры и высотные отметки конструкций проставляются на обмерных чертежах в соответствии с правилами оформления архитектурно — строительных рабочих чертежей (ГОСТ Р.21.1501-92).
3. Измерения прогибов и деформаций
Деформации и прогибы в конструкциях возникают вследствие перегрузок, неравномерной осадки фундаментов, пучения грунтов оснований, температурных воздействий при изменении уровня грунтовых вод и влажного режима грунтов оснований, потерь устойчивости несущих конструкций и других внешних воздействий. Нередко характер развития деформаций конструкций может свидетельствовать о обуславливающих причинах.
Допустимые пределы деформаций и прогибов зависят от материала и вида конструкций и регламентируются нормами проектирования конструкций зданий.
Отклонения от вертикали и искривления от вертикальной плоскости конструкций могут быть измерены с помощью отвеса и линейки. (Рис. 1)
Рис. 1.Измерение отклонений от вертикали с помощью отвеса: 1-стена, перегородка или колонна;2- перекрытие; 3-отвес; 4- сосуд с водой; 5- измерительная линейка; 6-точка измерения;
Смещение по горизонтали от опорных точек, а также вертикальные перемещения определяются измерениями с помощью мерной ленты, линейки или геодезической съемкой. С помощью теодолитов могут быть измерены также наклоны и выпучивания стен и других вертикально расположенных конструкций. прогибомер строительный конструкция
Величины прогибов, искривлений конструкций и их элементов измеряются путем натяжений тонкой проволоки между краями конструкций или ее частями, не имеющими деформации, и измерения максимального расстояния между проволокой и поверхностью конструкции с помощью линейки. (Рис2)
Рис.2. Измерение горизонтального и вертикального смещения двух точек с помощью теодолита: 1, 2- точки; 3- теодолит; 4-переносная линейка.
Величины прогибов могут быть определены также с помощью прогибомеров и гидростатического уровня. (Рис.3, Рис.4)
При использовании прогибомеров измеряется величина перемещения элемента, закрепленного на деформирующемся участке конструкции, относительно неподвижного элемента. В качестве прогибомера могут быть использованы две планки или система, передающая перемещения от недеформируемой конструкции на измерительный прибор, в качестве которого обычно используется индикатор часового типа (мессура).
При малых линейных деформациях растяжения или сжатия измерение прогибов производится при помощи тензометров, а сдвиги и повороты — геодезической съемкой. (рис. 3)
Рис.3.Прогибомер П-1: 1-мерный диск; 2- металлическая трубка; 3-стеклянная трубка со шкалой; 4-окуляр;5- резиновая трубка;6- зажим; 7-шток; 8- пробка.
Рис.4.Схема измерения прогибов с помощью гидростатического уровня: 1-градурированная трубка; 2- телескопическая стойка; 3-сосуд с водой; 4- шланг; 5-запорный кран; 6- точка измерения.
Деформацию перекрытий определяют прогибомером П-1 или нивелиром НВ-1 со специальной насадкой.
Перед началом замеров шток устанавливают в такое положение, чтобы показания к мерной трубке соответствовал нулю. Затем трубку с диском передвигают по поверхности потолка; через каждый полный поворот диска снимают отсчеты по мерной трубке. Прогибы замеряют в различных точках потолка.
Таким же образом прогибомером П-1, нивелиром НВ-1 измеряют прогибы несущих элементов лестниц — балок, маршей и плит.
Определение кинетики развития деформаций осуществляется путем их многократных измерений через определенные интервалы времени (от одних до 30 сут.) в зависимости от скорости развития деформации.
Основной причиной появления общих деформаций зданий и сооружений являются неравномерные осадки грунтов оснований, что является следствием, как правило, изменения гидрогеологических условий, чрезмерного увлажнения грунтов, надстройки существующего здания без учета несущей способности фундаментов и т.п.
Наблюдения за деформациями зданий и сооружений, находящихся в эксплуатации, проводят в случаях появления трещин, раскрытия швов, перемещения и наклона строительных конструкций, а также резкого изменения условий эксплуатации.
Цель наблюдения за деформациями состоит в том, чтобы установить, стабилизировались или продолжают развиваться осадки здания и другие изменения в конструкциях
Если в процессе наблюдения не были выявлены основные или наиболее вероятные причины деформаций, то наблюдения продолжают вести длительное время.
Деформации разделяют на местные, когда происходят смещение или повороты в узлах конструкций, растяжение или сжатие элементов, н общие, когда перемешаются и деформируются ряд конструкций или здание в целом.
Для измерений деформаций, осадок, кренов, сдвигов зданий и сооружений и их конструкций используют методы инженерной геодезии. Измерения производятся специализированными организациями.
Размещено на Allbest.ru
Подобные документы
Геометрические параметры зданий и сооружений. Измерения по контролю точности геометрических параметров при выполнении видов строительных работ на этапах строительства. Точность геометрических параметров в строительстве, требования к процессу измерения.
курсовая работа [868,4 K], добавлен 11.11.2014
Цель и виды технического обследования. Проведение обмерных работ, определение фактических размеров зданий, сооружений, внутренних помещений. Измерение отклонений положения и прогибов горизонтальных конструкций. Методы контроля прочности сооружений.
презентация [1,0 M], добавлен 26.08.2013
Понятие и характерные особенности естественного и искусственного освещения помещений, расчет по обеспечению требуемого освещения. Порядок определения надежности конструкций. Оптимизация геометрических параметров детали по затратам на ее изготовление.
контрольная работа [17,9 K], добавлен 28.03.2011
Расчет основных размеров сооружений в плане и профиле. Выбор оптимального варианта конструкции ограждения. Определение расчетной схемы поперечной рамы, размеров ее сечений и геометрических параметров оси. Вычисление нормативных и расчетных нагрузок.
курсовая работа [3,2 M], добавлен 26.12.2012
Определение геометрических размеров сооружения и элементов конструкций. Вычисление нормативных и расчётных нагрузок. Определение нормативных и расчётных нагрузок, прогонов, комбинированных панелей. Статический расчет основных несущих конструкций.
курсовая работа [1,4 M], добавлен 06.03.2015
Определение значения монтажных работ в технологическом процессе строительства. Понятие монтажной технологичности, этапы подготовки строительных конструкций к монтажу. Изучение классификации методов монтажа и описание технических средств его обеспечения.
реферат [1,4 M], добавлен 15.10.2014
Конструирование сборной железобетонной плиты, назначение геометрических размеров, классов арматуры и бетона, определение потерь предварительного напряжения. Расчет прочности сплошной колонны среднего ряда фундамента и основных геометрических размеров.
курсовая работа [318,7 K], добавлен 16.11.2009
Источник
Измерение деформаций
Понятие и виды деформаций тел. Классификация тензометров и особенности тензодатчиков. Сущность пьезоэффекта и его параметры. Условия осуществления оптимальной конструкции пьезоэлектрического преобразователя. Характеристика тензорезисторного датчика М50.
Рубрика | Физика и энергетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 08.06.2015 |
Размер файла | 393,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1. Общие сведения
2. Виды деформации твердых тел
3. Классификация тензометров
4. Основные параметры преобразователей
5. Особенности тензодатчиков
6. Понятие пьезоэффекта и его основные параметры
7. Условия применения преобразователей
8. Причины неравномерности амплитудно-частотной характеристики пьезоэлектрических преобразователей
9. Условия осуществления оптимальной конструкции пьезоэлектрического преобразователя
10. Тензорезисторный датчик М50
10.1 Область применения
10.2 Описание средства измерения
10.3 Технические характеристики
10.4 Расчет погрешности
В последнее десятилетие в условиях рыночной экономики важным фактором успеха предприятий стало качество измерительной информации, которое в основном зависит от качества средств измерений.
Сегодня качество измерений характеризуется преобразователями измерений, которые обладают высокими эксплуатационными параметрами: быстродействием, малыми погрешностями, многоразрядностью.
Современные технологии требуют постоянного контроля за многими параметрами технологических процессов и контроля состояния оборудования. Не маловажными являются параметры упругого механического напряжения, а именно изменение взаимного положения частиц тела, связанное с их перемещением относительно друг друга (деформации).
Измерение деформаций называется тензометрией; измерения производятся с помощью тензометров. Кроме того, широко применяются резистивные тензодатчики, поляризационно-оптический метод исследования напряжения, рентгеноструктурный анализ.
Деформация (от лат. deformatio — «искажение») — изменение взаимного положения частиц тела, связанное с их перемещением относительно друг друга. Деформация представляет собой результат изменения межатомных расстояний и перегруппировки блоков атомов. Обычно деформация сопровождается изменением величин межатомных сил, мерой которого является упругое механическое напряжение.
Деформации разделяют на обратимые (упругие) и необратимые (пластические, ползучести). Упругие деформации исчезают после окончания действия приложенных сил, а необратимые — остаются. В основе упругих деформаций лежат обратимые смещения атомов металлов от положения равновесия (другими словами, атомы не выходят за пределы межатомных связей); в основе необратимых — необратимые перемещения атомов на значительные расстояния от исходных положений равновесия (то есть выход за рамки межатомных связей, после снятия нагрузки переориентация в новое равновесное положение).
Пластические деформации — это необратимые деформации, вызванные изменением напряжений. Деформации ползучести — это необратимые деформации, происходящие с течением времени. Способность веществ пластически деформироваться называется пластичностью. При пластической деформации металла одновременно с изменением формы меняется ряд свойств — в частности, при холодном деформировании повышается прочность.
Виды деформации тела:
В большинстве практических случаев наблюдаемая деформация представляет собой совмещение нескольких одновременных видов деформаций. В конечном счёте, любую деформацию можно свести к двум наиболее простым: растяжению (или сжатию) и сдвигу.
Деформация твёрдого тела может явиться следствием фазовых превращений, связанных с изменением объёма, теплового расширения, намагничивания (магнитострикция), появления электрического заряда (пьезоэлектрический эффект) или же результатом действия внешних сил.
Измерения производятся с помощью тензометров. Кроме того, широко применяются резистивные тензодатчики, поляризационно-оптический метод исследования напряжения, рентгеноструктурный анализ.
Тензометры — это приборы измеряющие напряжение и деформацию на локальном участке. Существует несколько видов тензометров. Среди них механический, резистивных, струнный и другие виды.
2. Виды деформации твердых тел
Деформация растяжения — вид деформации, при которой нагрузка прикладывается продольно от тела, то есть соосно или параллельно точкам крепления тела. Проще всего растяжение рассмотреть на буксировочном тросе для автомобилей. Трос имеет две точки крепления к буксиру и буксируемому объекту, по мере начала движения трос выпрямляется и начинает тянуть буксируемый объект. В натянутом состоянии трос подвергается деформации растяжения, если нагрузка меньше предельных значений, которые может он выдержать, то после снятия нагрузки трос восстановит свою форму.
Данные испытания являются главными для всех тросов и веревок, которые используются для строповки, крепления грузов, альпинизма. Растяжение имеет значение также при строительстве сложных подвесных систем со свободными рабочими элементами.
Деформация сжатия — вид деформации, аналогичный растяжению, с одним отличием в способе приложения нагрузки, ее прикладывают соосно, но по направлению к телу. Сдавливание объекта с двух сторон приводит к уменьшению его длины и одновременному упрочнению, приложение больших нагрузок образовывает в теле материала утолщения типа «бочка».
Деформация сжатия широко используется в металлургических процессах ковки металла, в ходе процесса металл получает повышенную прочность и заваривает дефекты структуры. Сжатие также важно при строительстве зданий, все элементы конструкции фундамента, свай и стен испытывают давящие нагрузки. Правильный расчет несущих конструкций здания позволяет сократить расход материалов без потери прочности.
Деформация сдвига — вид деформации, при котором нагрузка прикладывается параллельно основанию тела. В ходе деформации сдвига одна плоскость тела смещается в пространстве относительно другой. На предельные нагрузки сдвига испытываются все крепежные элементы — болты, шурупы, гвозди. Простейший пример деформации сдвига — расшатанный стул, где за основание можно принять пол, а за плоскость приложения нагрузки — сидение.
Деформация изгиба — вид деформации, при котором нарушается прямолинейность главной оси тела. Деформации изгиба испытывают все тела подвешенные на одной или нескольких опорах. Каждый материал способен воспринимать определенный уровень нагрузки, твердые тела в большинстве случаев способны выдерживать не только свой вес, но и заданную нагрузку. В зависимости от способа приложения нагрузки при изгибе различают чистый и косой изгиб.
Значение деформации изгиба важно для проектирования упругих тел, таких, как мост с опорами, гимнастический брус, турник, ось автомобиля и другие.
Деформация кручения — вид деформации, при котором к телу приложен крутящий момент, вызванный парой сил, действующих в перпендикулярной плоскости оси тела. На кручение работают валы машин, шнеки буровых установок и пружины.
3. Классификация тензометров
Резистивные тензометры представляют популярную группу универсальных приборов для контроля растяжения или сжатия контролируемого изделия. В качестве чувствительного элемента в тензометрах этого типа используются тензорезисторы. Принцип действия тензорезистора базируется на изменении электрического сопротивления при деформации его вместе с изделием. Он представляет собой отрезок тонкой проволоки, уложенный змейкой на изоляционной основе. Для увеличения чувствительности в тензометрах используют по несколько тензорезисторов, включаемых по мостовой схеме.
Чувствительным элементом струнного тензометра служит отрезок стальной проволоки, закрепленной внутри трубки к ограничивающим торцы крепежными блоками. Принцип работы тензометра заключается в наличии зависимости частоты колебаний проволоки (струны) от ее натяжения.
Устанавливается датчик на поверхности контролируемого изделия путем приварки шаблона, с помощью болтовых соединений или клея. Датчик является изделием многоразового использования. Съем информации с помощью кабеля.
В настоящее время выпускаются индуктивные тензометры двух видов. Первый — это тензометры с опорными призмами и регулируемой базой. Второй — с ножевыми опорами для работы с изделиями стержневого вида. В обеих чувствительным элементом служит катушка индуктивности с подвижным сердечником.
Катушка индуктивности закрепляется неподвижно на объекте. Подвижный сердечник соединен с ним через подвижную призму или нож и изменяет свое положение под воздействием деформирующей силы. Это перемещение приводит к изменению индуктивности или взаимоиндуктивности катушки. Зависимость электрических параметров катушки индуктивности от положения ее подвижного элемента положено в основу работы тензометров этого типа.
4. Основные параметры преобразователей
Тензодатчик — измерительный преобразователь деформации твердого тела, вызываемой механическими напряжениями в электрический сигнал, предназначенный для последующей обработки.
Бывают металлические (проволочные, фольговые, пленочные) и полупроводниковые (пластинчатые).
В основе принципа работы металлических тензорезисторов лежит явление тензоэффекта, заключающееся в изменении электрического сопротивления проводящего материала при его механической деформации.
Основной характеристикой чувствительности материала к механической деформации является коэффициент относительной тензочувствительности , определяемый как отношение относительного изменения сопротивления к относительному изменению длины проводника:
Так как сопротивление проводника связано с удельным электрическим сопротивлением с материала, длиной и площадью поперечного сечения этого проводника зависимостью
то относительное изменение сопротивления, вызванное деформацией проводника под действием равномерного механического напряжения,
Из последнего выражения следует, что при конечном изменении напряжения относительное изменение сопротивления
При деформации твердых тел изменение их длины связано с изменением объема. При этом изменение объема в зоне упругих деформаций для каждого материала является величиной постоянной и характеризуется коэффициентом Пуассона
(здесь — диаметр проводника круглого сечения или поперечный размер проводника квадратного сечения).
получим выражение для коэффициента относительной тензочувствительности
Фольговые преобразователи представляют собой ленту из фольги толщиной 4—12 мкм, на которой часть металла выбрана травлением таким образом, что оставшаяся его часть образует решетку с выводами. Фольговые преобразователи имеют меньшие габариты, чем проволочные; известны тензорезисторы с базой до 0,8 мм. У фольговых тензорезисторов поперечная чувствительность значительно меньше за счет расширения поперечных участков . Характерные типы фольговых преобразователей показаны на рис. . Недостатком обычных фольговых преобразователей является сравнительно низкое сопротивление, не превышающее обычно 50 Ом.
Металлические пленочные тензорезисторы изготовляются путем вакуумной возгонки тензочувствительного материала с последующим осаждением его на основу (подложку). Форма тензорезистора задается маской, через которую производится напыление. Пленочные тензорезисторы имеют толщину меньше 1 мкм. Для изготовления пленочных тензорезисторов применяются металлические сплавы (например, титаноалюминиевый).
измерение деформация тензометр тензодатчик
Работа тензодатчика основана на простых принципах механики, и если на механическую конструкцию действуют внешние силы, то она изменяет свою форму таким образом, чтобы противостоять воздействию этих сил. Такие изменения могут быть явными и значительными, как в случае изгиба удочки при выуживании пойманной рыбы или могут быть микроскопическими, например — прогиб железнодорожного моста при проезде по нему поезда. Если в данной металлической конструкции сделать небольшое отверстие, оно будет деформироваться в эллипс при деформации самой конструкции, прямо пропорционально приложенной к конструкции силе. Если в это отверстие вклеить пленочный тензорезистор, можно с большой точностью измерить эту деформацию или нагрузку. Таким образом, тензорезистор эффективно превращает всю конструкцию в датчик для измерения силы, нагрузки или положения.
Максимальная нагрузка на тензодатчик зависит от конструкции: существующие системы измерений имеют пределы взвешивания от нескольких грамм до сотен тысяч тонн. При этом обеспечивается минимальная чувствительность к колебаниям температуры за счет схемотехнических решений. В современных тензорезисторных датчиках используется двойной мост (мост Кельвина), что позволяет снизить ошибки нелинейности, повторяемости и гистерезиса. Определенная степень точности должна быть обеспечена при выборе места установки датчиков в конструкцию используемого измерительного устройства. Необходимо учитывать, что на точность полученной системы влияют количество датчиков, нагрузка на каждый датчик, материал самой конструкции. Отметим, что минимального уровня ошибок можно достичь только при правильной установки датчиков в конструкцию.
Тензометрические датчики подразделяются:
* по типам (балочные, S-образные, таблеточные, сдвоенная балка и т.п.);
* по максимальной нагрузке ( от нескольких грамм до десятков и сотен тонн);
* по чувствительности (1..2..3 mV выходного сигнала на 1 V питающего напряжения);
* по классу точности (количество поверочных интервалов) и т.д.
Классификация тензодатчиков по области применения:
* тензодатчики для С/Х оборудования;
* тензодатчики для прокатных станов;
* тензодатчики для штамповочных прессов;
* тензодатчики для автопогрузчиков;
* тензодатчики для контроля износа оборудования;
* тензодатчики для охранных систем;
* тензодатчики для измерения нагрузок в конструкциях;
* тензодатчики для измерения моментов;
* тензодатчики для взвешивания емкостей;
* тензодатчики для монорельсовых весовых систем;
6. Понятие пьезоэффекта и его основные параметры
В настоящее время наиболее широкое применение контактные пьезоэлектрические вибропреобразователи инерционного действия. Пьезоэлектрические вибропреобразователи основаны на использовании явлений прямого и обратного пьезоэффектов. При прямом пьезоэффекте под действием механических сил на некоторые вещества с кристаллической структурой возникает деформация элементарных ячеек кристалла, приводящая к смещению положительных и отрицательных ионов относительно друг друга, что вызывает электрическую поляризацию вещества. При обратном пьезоэффекте воздействие внешнего электрического поля вызывает относительное смещение положительных и отрицательных ионов, что приводит к деформации вещества. Пьезоэффект наиболее сильно выражен у кварца, сегнетовой соли, титаната бария, цирконата титана свинца (ЦТС), ряда других материалов.
Основными параметрами, характеризующими пьезоэффект являются: напряженность электрического поля Ј, поляризация Р (или электрическая индукция D), упругое напряжение
© 2000 — 2021, ООО «Олбест» Все права защищены
Источник