Проектирование, подбор, поставка, монтаж холодильного и кондиционирующего оборудования
Основные методы определения влажности воздуха
Температура воздуха легко и достаточно точно может быть измерена термометрами или термопарами. Определив влажность воздуха и зная температуру, аналитически или с помощью d—I диаграммы находят все остальные параметры состояния воздуха.
В практике наиболее широко применяются следующие методы определения влажности воздуха: психрометрический, метод точки росы, гигроскопический и массовый, причем первый из них – самый распространенный.
Психрометрический метод основан на использовании прибора, называемого психрометром, который состоит из двух расположенных рядом термометров. Один из термометров, обычный, называется сухим, измеряющим температуру t воздуха. Баллончик с расширяющейся жидкостью другого термометра обертывают легкой гигроскопической тканью, например батистом, в виде чехла, нижний конец которого опускают в сосуд с водой. Вода по чехлу, как по фитилю, поднимается к баллончику и постоянно смачивает его. Этот термометр называется влажным или мокрым и измеряет температуру воздуха по мокрому термометру tм ≤ t. Устройство простейшего психрометра Августа показано на рис. 1.
Рис. 1. Психрометр Августа: 1 – сухой термометр; 2 – деревянная панель; 3 – влажный (мокрый) термометр; 4 – чехол (ткань); 5 – сосуд с водой.
Остановимся кратко на понятии температуры tм. воздуха по мокрому термометру. Баллончик этого термометра обернут смоченной тканью. На испарение воды с ткани расходуется теплота парообразования, что приводит к понижению температуры влажной ткани и постепенному снижению показаний мокрого термометра. Вследствие образующейся разности температур теплота от окружающего воздуха начинает поступать к влажной ткани. Температура мокрого термометра будет снижаться до такого значения, при котором количество скрытой теплоты, расходуемой тканью на испарение, станет равным количеству явной теплоты, отдаваемой воздухом ткани. Установившееся значение tм (температуры мокрой ткани и слоя насыщенного воздуха около нее) называют температурой мокрого термометра для воздуха данного состояния. Этот процесс тепловлагообмена между воздухом и водой, т. е. насыщения воздуха, считается адиабатическим, так как воздух и вода обмениваются внутренним теплом без отвода или подвода его извне (вне системы воздух-вода).
В установившемся процессе адиабатического насыщения энтальпия воздуха не изменяется, так как переходу от воздуха к воде вследствие разности температур (t – tм) явной (ощутимой) теплоты эквивалентен возврат скрытой теплоты (парообразования влаги, переходящей от воды к воздуху вследствие разности парциальных давлений водяных паров в насыщенном (над поверхностью воды) и ненасыщенном (измеряемом) воздухе). Это видно из выражения для энтальпии:
в котором при адиабатическом насыщении воздуха первый член (явное теплосодержание) уменьшается, а третий (скрытая часть I) – увеличивается. Второй член этого уравнения практически остается постоянным, так как с уменьшением t увеличивается d.
Однако, идеальный адиабатический процесс возможен только при tм = 0 °C (линии I = const и tм = const в d—l диаграмме совпадают только при tм = 0 °С). При tм > 0 °C энтальпия насыщенного воздуха (у баллончика) будет больше энтальпии ненасыщенного воздуха (вдали от баллончика термометра) на величину теплоты испарившейся воды 4,19·(dн – d)·tм, где dн – влагосодержание насыщенного воздуха, a d – влагосодержание ненасыщенного воздуха. Из-за малости величины 4,19·(dн – d)·tм практически этот процесс насыщения и считают адиабатическим, а энтальпию воздуха постоянной.
Таким образом, под температурой мокрого термометра следует понимать температуру, которую принимает воздух в результате его адиабатического насыщения (увлажнения). Разность показаний сухого и мокрого термометров (t – tм) называется психрометрической разностью или депрессией мокрого термометра. Она тем больше, чем суше воздух, т. е. чем меньше его относительная влажность.
По температуре t воздуха и психрометрической разности (t – tм) можно определить относительную влажность φ и остальные параметры воздуха. Для более простого определения φ составляют психрометрические таблицы, которые прилагаются к психрометрам и имеются в многочисленной специальной литературе.
Недостатком психрометра Августа является его сравнительно малая точность из-за существенного влияния радиационных притоков (от окружающей среды и предметов) к незащищенному прибору при недостаточной скорости воздуха около баллончика (движение создается только свободной конвекцией). Поэтому показания мокрого термометра t‘м будут несколько завышены в сравнении с истинной температурой tм. По данным Каррье, при нулевой скорости воздуха ошибка в определении (t – tм) достигает 14 %, а при скорости воздуха 0,8 м/с она уменьшается до 2 %.
Для повышения точности показаний мокрого термометра прибегают к искусственному увеличению скорости воздуха около баллончиков психрометра и защите его от внешних теплопритоков (тепловых излучений). При скоростях воздуха около баллончиков 1,5…2 м/с ошибка в определении (t – tм) составляет менее 1 %. Объясняется это тем, что при повышенных скоростях воздуха конвективный приток теплоты, уравновешивающий потери теплоты в слое насыщенного воздуха около шарика термометра от испарения влаги, увеличивается и относительное влияние внешних (радиационных) теплопритоков значительно уменьшается. Удобным и достаточно точным прибором для определения влажности воздуха служит аспирационный психрометр Ассмана (рис. 2). Оба термометра заключены в металлические трубки, через которые специальным вентилятором с пружинным (заводным) или электрическим двигателем, смонтированным в верхней части прибора, пропускается исследуемый воздух со скоростью 2,5…3,0 м/с. Поверхность трубок для защиты термометров от теплового облучения полирована и никелирована. В остальном аспирационный психрометр устроен так же, как и психрометр Августа.
Рис. 2. Психрометр Ассмана.
Существуют также электрические психрометры, построенные по принципу электрического мостика сопротивления (сопротивление мокрого термометра меньше, чем сухого).
Состояние воздуха по показаниям сухого и мокрого термометров легко определить в d—I диаграмме (рис. 3). Пусть показание сухого термометра равно tА, а показание мокрого термометра tм. Если на диаграмме нанесены изотермы tм = const, точка A, характеризующая состояние воздуха, и φA находятся на пересечении изотерм tA = const и tм = const. Если же в d—l диаграмме нет изотерм по мокрому термометру, нужно из точки K, пересечения изотермы t = tм с кривой насыщения φ = 1 подняться по линии I = const (без особой погрешности можно считать линии I = const и tм = const совпадающими) до пересечения с изотермой tA.
При положительной температуре воздуха психрометры работают с погрешностью ±1…2 %, при отрицательной точность их показаний резко снижается из-за образования у баллончика мокрого термометра корочки льда, выделения теплоты затвердевания и т. п.; при t ≤ 0 °C практически ими не пользуются.
Метод точки росы основан на измерении температуры tрос воздуха, охлаждаемого, например, металлической неокисляемой зеркальной поверхностью (в момент начала выпадения капельной влаги на зеркале фиксируется его температура).
Зная tрос и температуру tA воздуха, можно в диаграмме, изображенной на рис. 3, поднимаясь из точки B на кривой насыщения по линии d = const до изотермы tA, найти точку А их пересечения, а значит, влажность φA и другие параметры состояния воздуха.
Рис. 3. Определение влажности воздуха психрометрическим методом и методом точки росы в d—I диаграмме.
Метод точки росы менее точен, чем психрометрический. Однако он применим при температурах до –70 °C (с погрешностью измерения tрос ±0,1 °C).
Гигроскопический метод основан на способности некоторых материалов изменять свою форму и размеры (удлиняться – обезжиренный человеческий волос, капроновая нить и др.), или свойства (электропроводимость – соль LiCl и др.) при впитывании влаги из воздуха в количестве, пропорциональном его относительной влажности. Поэтому, используя эти материалы в механических или мостовых электрических схемах, можно создавать приборы невысокой точности, называемые гигрометрами.
Массовый (абсолютный) метод наиболее точен, но трудоемок и требует специального оборудования – вентилятора, влагопоглотителей и др. Воздух продувают через поглотители. Отнеся объемный расход воздуха к массе поглощенной всей влаги, определяют абсолютную влажность воздуха γп. По температуре воздуха из таблиц насыщенного пара находят его плотность γ″п, т. е. абсолютную влажность насыщенного воздуха; тогда φ = γп / γ″п.
Основные методы определения влажности воздуха : 16 комментариев
Спасибо за прекрасный пост. Пригодился. Ставлю вентиляяцию в гараже. Про метод росы было очень полезно.
Да и безусловно соглашусь, что ваш блог просто невероятно орегинален)
Благодарю вас за публикацию, очень помогла в решении задачи по физике на определение влажности воздуха
Хочу добавить, что на показания психрометра влияет еще и атмосферное давление, поэтому приходится делать поправки
а как определить влагосодержание d??
известна tн=-50. tв=5. необходимо определить t точки росы в помещении
1. “а как определить влагосодержание d??”. Для нахождения любого из параметров по d-I диаграмме, характеризующего состояние влажного воздуха в определенной точке, изначально необходимо знать как минимум два из них. Например, если известна температура t=14 °С и относительная влажность φ=0,3 (т.е. относительная влажность 30%) – находим на диаграмме точку на пересечении линий, соответствующим этим двум параметрам, после этого из полученной точки проводим перпендикуляр на ось d влагосодержания, и видим, что для данных условий d=2,9 г/кг.
2. “известна tн=-50. tв=5. необходимо определить t точки росы в помещении”. Не ясно, что в данном случае обозначают индексы “н” и “в”. Тем не менее, по d-I диаграмме, один из параметров состояния воздуха — температуру точки росы tрос — находят в месте пересечения вертикали, проведенной из точки состояния воздуха вниз, с кривой насыщения φ = 1,0. Например, для воздуха с параметрами в точке t=5 °С, φ = 0,74, температура tрос составит 0,78 °С.
Источник
Измерение относительной влажности в быту
Теория
Напомню, что вещество может находиться в твердом, жидком или газообразном состоянии (речь о жилых помещениях с температурой 15-30 о С при нормальном — 720-770 мм.рт.ст. — атмосферном давлении). Жидкости характеризуются летучестью паров — при данной температуре некое количество молекул жидкости переходит в газообразное состояние. Количество таких молекул в воздухе зависит от свойств жидкости (есть крайне летучие, как эфир, а есть совсем не летучие, как силиконовое масло), температуры и давления.
Как долго и как много молекул будут покидать жидкую фазу? Это зависит от уже имеющегося их количества в воздухе (газовой фазе). Здесь прямая аналогия с конкуренцией на рынке. Если рынок пустой и доходный, туда «ломятся» множество производителей. Но чем их больше, тем выше конкуренция и ниже доход. В результате на рынке устанавливается некое равновесие. Тоже самое происходит и с воздухом. Молекулы воды будут переходить в газовую фазу либо до исчерпания жидкости, либо до состояния равновесия (при данной температуре и давлении). Равновесие в данном случае выражается в достижении равенства между количеством молекул из жидкой фазы вылетающих с числом молекул, туда возвращающихся.
Если мы говорим об океане, то молекулы воды очевидным образом кончиться не могут, воды много. Но в помещении обычно нет открытого водного зеркала, откуда происходит испарение (за исключением нашей любимой чашки с чаем или кофе). Вода содержится в гигроскопичных материалах, находящихся в помещении (дерево, ткань и пр.). Т.е. равновесие в данном помещении будет достигнуто не из-за насыщения воздуха парами воды до максимального значения, но потому, что вода закончилась.
Важно понимать, что количество молекул воды в воздухе зависит от температуры. При росте температуры на 10 о С количество вырастает приблизительно в два раза. С ее снижением равновесное содержание также быстро уменьшается. Когда температура становится отрицательной, воды в воздухе очень мало. Напомню, что шкала Цельсия основана на двух реперных точках, связанных с свойствами именно воды. Вода (особо чистая, оговорюсь) замерзает при нуле градусов, а кипит при 100 о С. Т.е. при отрицательных температурах воздух быстро высыхает.
Все мы знаем, что это высыхание ведет, например, к тому, что двери из гигроскопичного материала (дерева, МДФ и пр.) «рассыхаются». Точно также увеличиваются щели в полах из паркета или паркетной доски. Естественно, материал невозможно в домашних условиях высушить до нулевого содержания воды, ее количество опять-таки будет равновесным и определяется как свойствами материала, так и условиями окружающей среды.
Далее, человек на 95% состоит из воды. И она тоже испаряется в условиях, когда количество молекул в единице объема воздуха далеко от равновесного. Собственно, тело человека и является основным источником влаги в такой ситуации. В итоге мы тоже высыхаем, причем в первую очередь обезвоживаются слизистые, поскольку они в норме влажные (т.е. содержат свободную воду). К чему это ведет, мы тоже хорошо знаем. Горло и язык «пересыхают», появляются неприятные ощущения в носоглотке.
Поскольку — в отличии от атмосферного давления — мы в силах регулировать влажность в жилых помещениях, не комфортные условиях можно изменить. В данной статье речь идет о ручном регулировании, темы «умного дома» не затрагиваются.
Но сначала нужно определиться, как мы будем измерять влажность, по какому критерию мы будет ее регулировать. Различают 2 базовых показателя. Первый совсем простой по смыслу, называется «абсолютная влажность». Очевидным образом, это содержание воды в граммах на единицу объема или веса воздуха. Обычно говорят об объеме, тогда абсолютная влажность измеряется в г/м 3 , т.е. количество граммов воды в кубометре воздуха в нашей квартире.
Второй чуть сложнее. Если жидкой воды в помещении достаточно, то — как я уже сказал выше — она будет испаряться до достижения равновесного (насыщенного) значения. Например, 5 г/м 3 . В квартирах, как уже говорилось, свободной жидкой воды, как правило, нет. Следовательно, содержание воды в воздухе равновесно-насыщенного значения не достигнет, вода раньше закончится. Допустим, это значение 2.5 г/м 3 . Тогда можно определить, сколько это в процентах от равновесного значения, т.е. (2.5/5х100)=50%. Эту величину называют «относительной влажностью» (relative humidity, RH) и именно ее измеряют бытовые гигрометры и психрометры.
Еще немного простейшей физики. Ниже в таблице показано содержание воды в граммах на кубометр в зависимости от температуры:
Как видно из таблицы:
60 % отн. влажности воздуха при +30 гр. — это 30,4 * 60 % = 18,24 гр/м 3 абсолютной влажности
60 % отн. влажности воздуха при +20 гр. — это 17,3 * 60 % = 10,38 гр/м 3
60 % отн. влажности воздуха при -10 гр. — это 2,1 * 60 % = 1,26 гр/м3
Заметьте, относительная влажность одинаковая, а абсолютная отличается в разы. Т.е. показания относительной влажности воздуха можно сравнивать при условии, что измерения делались при одинаковой температуре, измерения при разной температуре сравнивать не имеет смысла.
Эти данные позволяют также понять природу распространенного заблуждения о том, что нагреватели «сушат воздух». Содержание воды в кубометре при работающем нагревателе не меняется. Меняется равновесное содержание. Например, сегодня утром в комнате было 15 о С, влажность 51%. Я включил нагреватель, через определенное время стало 22 о С, а относительная влажность упала до 40%. Это произошло не из-за уменьшения количества воды в комнате, изменилась лишь величина RH, т.к. равновесное содержание воды при 22 градусах выше, чем при 15.
Естественно, существуют нормативные документы (ГОСТ, СНиП и пр.), в которых определено, какая влажность для человека комфортная и как оценивать значение влажности в помещениях разного типа. Приведу цитату:
«. СНиП 2.04.05-91* «Отопление, вентиляция и кондиционирование», Приложение 5 на правах обязательного, холодный (зима) и переходный (весна и осень) период – оптимальная влажность 30-45%. Те же цифры приведены в СанПиН 2.1.2.1002-00 «Санитарно-эпидемиологические требования к жилым зданиям и помещениям». Нормальная влажность в жилых помещениях определена в СанПиН 2.1.2.1002-00. «Требования к жилым зданиям и помещениям». Нормальная влажность в помещении, где нет принудительной системы вентиляции, поддерживается за счет регулярных проветриваний. В соответствии со «СНиП 23-01-99* «Строительная климатология», по величине влажности различают следующие режимы помещения: сухой (меньше 40%), нормальный (40÷50%), влажный (50÷60%) или мокрый (свыше 60%). Согласно ГОСТ 30494-2011 «Здания жилые и общественные. Параметры микроклимата в помещениях», в жилых помещениях не допускается влажность воздуха более 60% (оптимальная величина влажности – не более 45%).»
Вот теперь можно поговорить о том, как влажность регулировать. Она же может быть как низкой (недостаточной), так и высокой (избыточной).
Вначале о наболевшем, о повышении влажности. Можно держать рыбок в аквариуме. Можно ставить на отопительные приборы банки с водой, подвешивать специальные трубки с водой (способ популярен в Европе), наконец, просто сушить белье на батарее. Если батареи горячие, эффективность такого способа достаточно велика. Наконец, воду можно искусственно испарять с помощью разнообразных устройств. Они работают на различных принципах, я полагаю наиболее эффективными из доступных ультразвуковые увлажнители (УЗ). Главным показателем такого устройства является объем воды, испаряемой за единицу времени, обычно это миллилитры в час. Мой домашний УЗ имеет значение 300 мл/ч, промышленные устройства — до 1800 мл/ч. Естественно, испарение в час почти двух литров воды в квартире — это перебор. Увлажнение можно совмещать с очисткой воздуха, но это за рамками данной публикации. Напомню, что в УЗ нужно использовать обессоленную или дистиллированную воду, иначе он быстро выйдет из строя.
Осенью в сырую погоду при выключенном отоплении влажность становится избыточной, в квартире промозгло и неуютно. Улучшить ситуацию можно с помощью кондиционера, включенного на осушение.
И, наконец, о предмете этого материала — об измерении относительной влажности в бытовых условиях.
Психрометры работают по принципу сравнения значений температуры сухого и влажного термометра. Влажность определяют затем по таблицам, которые размещены на корпусе прибора, например, популярный ВИТ-1:
Обратите внимание на надпись под таблицами — это требование к скорости воздуха, обдувающего термометры (скорость аспирации). Если воздух неподвижен, то прибор будет показывать неверную влажность, поскольку не происходит отвода паров воды и, соответственно, охлаждение мокрого термометра. Если скорость слишком высокая, то вода во влажном термометре будет испаряться слишком быстро, его температура будет ниже, соответственно, разница показаний сухого и влажного будет больше, т.е. значение влажности будет заниженным (см. таблицу на рисунке выше). Ввиду того, что требуется постоянно доливать воду, а сам прибор достаточно громоздкий по нынешним временам, в квартирах его используют редко. Если вам не жалко нескольких сотен рублей, его можно купить для калибровки гигрометров.
Наиболее распространены сейчас гигрометры. Они бывают механическими и цифровыми. Механические гигрометры часто изготавливают в дизайнерском исполнении и используют для украшения интерьера:
Они могут работать на различных принципах, один из простейших — это использование двух спиралей, в зависимости от температуры воздуха и влажности они либо растягиваются, либо сжимаются.
Очевидно, что точность измерения бытовых недорогих механических гигрометров весьма невысока, обычно она выражается величиной т.н. относительной погрешности. Я оцениваю ее в 10% и более. Т.е. если прибор показывает 50%, то реальная влажность может отличаться на (50*0.1)/50*100=10% или 45-55%. Именно поэтому на рисунке выше гигрометр занимает меньше места, чем термометр, а шкала весьма грубая. У меня механических гигрометров нет.
Для более точных измерений используют компактные цифровые гигрометры. О них и пойдет разговор в следующем разделе. Они используют датчики влажности различных типов. В дешевых это подложка из электроизоляционного материала с пленкой из хлорида лития. Электрическое сопротивление этого материала меняется в зависимости от уровня влажности воздуха, что и измеряется электронной частью устройства. Очевидным образом, точность измерения зависит от качества изготовления датчика и электронных компонентов.
Практика контроля влажности в жилом помещении
Давайте уже поговорим о практике. На рисунке представлен тот набор гигрометров, что есть у меня:
Это метеостанции (№№ 1 и 2), их выносные датчики (№№ 5 и 6), а также термогигрометры (т.е. измеряют и температуру, и влажность).
Все устройства на фото (кроме одного) — родные «китайцы». Соответственно, можно предположить, что их заявленные показатели могут сильно отличаться от реальных. Обычно их точность объявляется на уровне 5%.
Устройство №4 — термогигрометр TechnoLine WS 7005 якобы немецкого производства, который я купил в Испании. Он до сих пор широко продается на Амазоне, его точность в диапазоне влажности 35-80% составляет 5%, за пределами указанного интервала — 7%. Обратите внимание, это важно: точность зависит от абсолютного значения, что обусловлено характеристиками датчика:
Видно, что зависимость сопротивления пленки хлорида лития от влажности, во-первых, нелинейная. А во-вторых, показана она начиная от 20% относительной влажности. Это связано с тем, что за пределами диапазона зависимость уже сильно нелинейная, использование показаний сопротивлений сопряжено с большими ошибками. И, наконец, в-третьих, вид кривой для каждого экземпляра датчика будет немного отличаться, что приведет к разнице в показаниях в одинаковых условиях. Именно в низком качестве изготовления причина большого разброса значений даже для датчиков из одной партии. Кстати, хочу заметить, что полная кривая отклика датчика в зависимости от влажности в большинстве случаев является S-образной (о таких кривых я писал ранее).
Большинство недорогих гигрометров просто неспособны отобразить значения ниже 20%, а показывают что угодно, кроме точного значения. Из показанных на рисунке измерять значения ниже 20% (для нас актуален прежде всего нижний порог) могут только №3 и №7 (они будут подробнее описаны ниже). Чтобы не ошибиться, важно реалистично оценивать условия измерения — например, утром в комнате, в которой всю ночь было открыто окно, а на улице -10 о С, влажность составляет 13-15%. Если прибор показывает иное — он с высокой вероятностью врет.
Специализированный гигрометр GM1362 (№3) имеет точность плюс минус 3%, а измерение температуры в нем — это дополнительная опция. Его я принял за самый точный из имеющихся прибор, относительно которого я «поверяю» остальные. О поверке см. публикацию. Отмечу только, что термин «поверка» является официальным. Поверкой оборудования в норме занимаются сертифицированные центры, имеющие оборудование высокой точности. В продаже есть уже официально поверенные гигрометры, но стоят они десятки тысяч рублей. Здесь же мы говорим о поверке в смысле сравнения показаний разных устройств, включая принятый за эталон. Хотя по ссылке вы можете найти доступные методы проверки показаний в домашних условиях.
Итак, метеостанция №1 показывает влажность 33%, ее датчик (№6) — 28%. Вторая (№2) тоже 33%, ее датчик (№5) — 29%. Можно предположить, что датчики влажности в самой метеостанции выше классом (т.к. их показания совпадают с «поверочным» гигрометром), чем датчики в выносных блоках.
«Немецкий» прибор влажность занижает (что подтверждают и отзывы пользователей на немецком и других сайтах Амазон). На разницу в 1% между №3 и №7 можно не обращать внимания, поскольку величина в пределах погрешности измерений.
Отмечу, что к метеостанциям повыше классом могут продаваться сменные датчики более высокого качества. По умолчанию же внешние блоки измеряют влажность в интервале 20-90%.
Еще одна важная вещь. Выше я упоминал, что скорость аспирации термометров психрометра должна быть в оговоренных пределах. Это верно и для датчиков гигрометров. Очевидно, что количество и расположение вентиляционных отверстий сильно влияет на показания. По-хорошему, гигрометр должен располагаться в токе воздуха (на «сквознячке»), либо обдуваться вентилятором на небольших оборотах. Именно по указанной причине в специализированном гигрометре (№3) датчик вынесен на щуп, а отверстия достаточно большие и расположены вокруг него (а не с одной стороны, как в недорогих приборах).
Наконец, о частоте опроса датчика. Пользователи №4 как раз указывают, что она крайне невелика, порядка одного раза за несколько минут. Для сравнения, скорость обновления показаний №3 составляет 3 секунды. Забавно наблюдать, как после выдоха на датчик его показания растут (воздух из легких насыщен парами воды) пару измерений, а затем плавно снижаются. Отсюда же следует и правило о том, что измерительному устройству надо давать достаточно времени для выхода на стационарные значения (в неизменных условиях, естественно). Прямо из коробки или с улицы прибор будет показывать невесть что.
Сказанное можно проиллюстрировать снимком устройств через некоторый промежуток времени:
Здесь интересно, что разница между показаниями устройств №4 и 6 — и №3 и №7 больше, чем на первом снимке. Это иллюстрирует соображения о том, что датчики должны быть правильно расположены (обдуваться воздухом) и о том, что кривые отклика датчиков различаются.
В следующих разделах я кратко остановлюсь на особенностях современных моделей метеостанций и термогигрометров, которые я могу рекомендовать по собственному опыту.
Термогигрометр Xiaomi MiaoMiaoCe E-Ink
«Фишками» прибора являются:
элегантный внешний вид (причем на столе он даже красивее, чем на фото)
высокая точность измерений и частота опроса датчиков
использование экрана типа E-Ink.
Использование дисплея на электронных чернилах (как в ридерах электронных книг) позволило добиться отличных углов обзора и читаемости показаний даже в сумерках. Он очень симпатично сделан и, что важнее, точно показывает и температуру, и влажность. Использован датчик влажности швейцарской разработки (изготовлен, конечно, в Китае), погрешность измерений 3%. Есть модели, которые могут передавать значения по протоколу Bluetooth на смартфон.
Метеостанция VL2810
возможность питания от сети, что позволяет избегать периодической настройки заново и держать подсветку экрана включенной постоянно
очень информативный цветной экран с подсветкой (3 режима от яркой до выключенной)
измерение давления в мм.рт.ст.
возможность калибровки всех датчиков.
Метеостанция на порядок лучше предыдущей модели, которой я пользовался. В комплекте 1, 2 или 3 внешних датчика. Отмечу, что выносные блоки выполнены в незащищенном исполнении, поэтому ставить их напрямую на улицу не стоит, лучше на лоджию и пр.
Все датчики (давления, температуры, влажности) можно калибровать — т.е. вносить систематическую поправку, чтобы показания совпадали с эталонным устройством.
Датчик влажности центрального блока достаточно высокого качества, диапазон 10-99%. Точность производителем не указана. Автоматически связывается с внешними блоками и устойчиво держит связь.
Яркость экрана невелика, а углы обзора очень небольшие, что можно рассматривать как недостаток. Мне важнее, что ночью он не светит в глаза, не мешает спать. При этом в сумерках и темноте видно отлично.
Найти имя производителя весьма непросто даже в сети. Полагаю, это связано с тем, что станция ну очень похожа на изделия известной фирмы La Crosse. Скорее всего, их производят, т.с., «параллельно».
Гигрометр Outest GM1362
диапазон 5-98%, точность плюс-минус 3%
высокая частота опроса.
Прибор недорогой, экран с подсветкой, питание от «Кроны», должно хватить надолго (есть автоматическое отключение). Из недостатков могу отметить серую рамку на корпусе, она не позволяет поставить гигрометр на стол, только положить. Сзади есть штативное гнездо с резьбой.
В инструкции, вложенной в упаковку, указан диапазон 0-100% (указанный выше диапазон лично мне представляется более реалистичным), а точность уточняется по интервалам значений относительной влажности: 0-20% — 4.5%; 20-80% — 3%; 80-100% — 4.5%. Причина уже пояснялась выше, наличие данной информации указывает на достаточно профессиональный подход изготовителя. Также есть утверждение, что прибор был откалиброван на заводе. Производителем заявлена фирма Benetech, а не Outest, как на сайте.
Приобретать этот прибор для использования в квартире особого смысла нет. Он может быть удобен в загородном доме и других локациях, где необходимо быстро измерить влажность в различных местах.
Заключение
Надеюсь, после ознакомления с этим материалом вы стали лучше ориентироваться в проблеме. Именно это и было моей главной целью.
Особо хочу подчеркнуть важный момент: в повседневной жизни нет необходимости измерять относительную влажность с очень высокой точностью, достаточно целого числа. Перфекционизм в данном вопросе ведет лишь к неэффективному расходованию бюджета. При ручном управлении влажностью в доме двухзначного значения вполне достаточно. Важно лишь убедиться в том, что приобретенный гигрометр в принципе работает и не врет на десятки процентов. Приобретение различных устройств (особенно дорогостоящих) имеет смысл только в случае, если вы осознанно и глубоко увлекаетесь этой темой.
Источник