- Урок физики «Внутренняя энергия. Способы изменения. Виды теплопередачи». 8-й класс
- Презентация к уроку
- Ход урока
- Объяснение нового материала:
- Внутренняя энергия
- Понятие о внутренней энергии.
- От чего зависит внутренняя энергия
- Способы изменения внутренней энергии
- Совершение работы над телом и наоборот
- Теплопередача
- Способы теплопередачи
- Теплопроводность
- Конвекция
- Излучение
Урок физики «Внутренняя энергия. Способы изменения. Виды теплопередачи». 8-й класс
Класс: 8
Презентация к уроку
Цели урока:
- развитие интересов и способностей учащихся на основе передачи им знаний и опыта познавательной и творческой деятельности;
- понимание учащимися таких важных понятий как энергия, внутренняя энергия, теплопередача и ее виды: теплопроводность, излучение, конвекция;
- формирование у учащихся представлений о фундаментальных законах природы на примере закона сохранения энергии.
Задачи:
- приобретение учащимися знаний о внутренней энергии, способах ее изменения, знакомство с терминами: теплопередача, теплопроводность, излучение;
- формирование у учащихся умения наблюдать природные явления, проводить экспериментальные исследования, делать выводы;
- овладение учащимися такими общенаучными понятиями, как природное явление, эмпирически установленный факт, результат эксперимента.
Тип урока: комбинированный.
Демонстрации:
- превращение механической энергии (на примере движения резинового мячика и маятника Максвелла);
- превращение механической энергии во внутреннюю (на примере падения свинцового шарика на свинцовую плиту);
- изменение внутренней энергии по рис 4 и 5 учебника (Перышкин А.В Физика-8), нагревание монеты в пламени свечи и при ее трении о деревянную линейку, нагревание свинца ударами молотка;
- опыты по рис.6-9 в учебнике (Перышкин А. В. Физика-8);
- опыты по рис 10,11 в учебнике (Перышкин А. В. Физика-8)
- наблюдение конвекции в газах на примере наблюдения конвекционных потоков от горящей свечи в проекции на освещенный экран;
- демонстрация светильников, в которых используется явление конвекции;
- нагревание воздуха в теплоприемнике излучением;
- демонстрация поглощательной способности различных веществ.
Ход урока
Примечание:
Материалы, представленные в данной презентации, включают несколько тем, важных для дальнейшего изучения тепловых явлений, рассчитаны на использование на нескольких уроках и при объяснении новой темы, и при обобщающем повторении в 8 классе и при изучении молекулярной физики в 10 классе.
Закрепление полученных знаний по теме целесообразно приводить на примерах задач, которые достаточно представлены в сборниках задач по физике:
- А.В. Перышкин Сборник задач по физике 7-9 классы, изд. «Экзамен» М., 2013.
- В.И. Лукашик, Е.В. Иванова Сборник задач по физике 7-9 классы, изд. «Просвещение» АО «Московские учебники», М., 2001.
- и другие.
Поэтому данная презентация может быть использована частично и (или) полностью на уроке в зависимости от целей и задач данного урока. Например при изучении нового материала.
Объяснение нового материала:
Приступая к формированию понятия внутренней энергии, необходимо предложить учащимся вспомнить, что они знают о механической энергии тел.
- В каком случае говорят, что тела обладают энергией?
- Какие виды механической энергии различают?
- Какие тела обладают кинетической энергией и отчего она зависит?
- От чего зависит потенциальная энергия тел?
- Приведите примеры превращения механической энергии.
В основу формирования понятия внутренней энергии положена идея о кажущемся «нарушении» закона сохранения энергии при соударении свинцового шара о свинцовую плиту.
Опыт №1. Соударение свинцового шара о свинцовую плиту. На основании «нарушения» закона сохранения энергии и исследования состояния свинцового шара после удара, делают вывод о наличии у всех тел энергии, которая называется внутренней энергией (слайд 6-8).
Далее необходимо разъяснить учащимся отличие внутренней энергии от механической энергии тел. Важно сделать вывод о том, что внутренняя энергия тел не зависит от механической энергии тела, а зависит от температуры тела и агрегатного состояния вещества. Другими словами, внутренняя энергия тела определяется скоростью движения частиц, из которых состоит тело и их взаимным расположением.
Следующий этап изучения нового материала – это изучение способов изменения внутренней энергии тела. На опытах можно наглядно продемонстрировать, что изменить внутреннюю энергию тела можно при совершении работы (над телом и самим телом) и при теплопередаче.
Это следующие опыты:
1. Изменение внутренней энергии совершением работы над телом.
Опыт №2. Потереть монетку о деревянную линейку, ладони рук друг о друга. Учащиеся делают вывод: внутренняя энергия тела увеличилась.
Опыт №3. Взять воздушное огниво. При быстром сжатии воздух нагревается столь значительно, что пары эфира, находящиеся в цилиндре под поршнем, воспламеняются. Учащиеся делают вывод: внутренняя энергия тела увеличилась.
2. Изменение внутренней энергии при совершении работы самим телом.
Опыт №4. В толстостенный стеклянный сосуд, закрытый пробкой, накачиваем воздух насосом через специальное отверстие в ней. Через некоторое время пробка вылетит из сосуда. В момент, когда пробка вылетает из сосуда, необходимо обратить внимание учащихся на образование тумана в стеклянном сосуде, что свидетельствует о понижении температуры находящихся в нем воздуха и водяного пара. Учащиеся делают вывод: внутренняя энергия тела уменьшилась.
3. Изменение внутренней энергии путем теплопередачи.
На основе опытов из повседневной жизни (ложка, опущенная в горячий чай нагревается, выключенный горячий утюг в комнате остывает).
На основе всех примеров и опытов делается общий вывод: внутренняя энергия тела может изменяться (увеличиваться или уменьшаться) со временем при теплообмене данного тела с окружающими его телами и при совершении механической работы (слайд 9).
При изложении механизмов и способов теплопередачи, необходимо обратить внимание учащихся, что теплопередача всегда происходит в определенном направлении: от тела с более высокой температурой к телу с более низкой температурой, что по существу подводить учащихся к представлению о втором законе термодинамики.
Рассмотрение различных видов теплопередачи начинают с теплопроводности. Для изучения этого явления рассматривают опыт №5 с нагреванием металлического стержня (см учебник Перышкин А.В. Физика-8) На основании результатов опыта учащиеся устанавливают факт передачи теплоты от одной части тела к другой и объясняют его.
Затем вводят понятие о хороших и плохих проводниках тепла. Наглядно демонстрируют на простых опытах №6, №7, №8, описанных в учебнике (А.В. Перышкин Физика-8) различную теплопроводность веществ и рассматривают использование в технике, быту и природе свойств тел по разному проводить тепло (слайд 11-13).
Изучение явления конвекции начинают с постановки следующего опыта №9: пробирку, наполненную водой нагревают на спиртовке в верхней части пробирки. При этом снизу пробирки вода остается холодной, а в верхней части – кипит. Учащиеся делают вывод о том, что вода обладает плохой теплопроводностью. Но! Вопрос учащимся: Как нагревают воду, например, в чайнике? Почему?
Ответы на эти вопросы получим, если проделаем следующий опыт №10:будем нагревать снизу на спиртовке колбу с водой, на дне которой помещен кристаллик марганцовки, окрашивающий конвекционные потоки.
Для демонстрации конвекции в газах, можно воспользоваться проектором и наблюдать конвекционные потоки, идущие от горящей свечи в проекции на экране.
В качестве примеров конвекции в природе рассматривают образование дневных и ночных бризов, а в технике – образование тяги в дымоходах, конвекцию в водяном отоплении, водяном охлаждении двигателя внутреннего сгорания (слайд 14-15).
Понятие об излучении как одном из способов передачи тепла можно начать с постановки вопроса: «Может ли энергия Солнца передаваться Земле теплопроводностью? Конвекцией?» Учащиеся делают вывод, что не может и, следовательно, существует другой способ передачи тепла.
Продолжить знакомство с излучением можно, поставив опыт №11 по нагреванию теплоприемника, соединенного с жидкостным манометром, и находящимся на некотором удалении сбоку от электрической плитки
Перед учащимися ставится вопрос: вследствие чего же воздух в теплоприемнике нагревается? Ведь теплопроводность и конвекция здесь исключены. Возникает проблемная ситуация, в результате обсуждения которой учащиеся приходят к заключению о том, что в данном случае имеет особый вид передачи – излучение – теплопередача с помощью невидимых лучей.
Далее на опыте №12 выясняют, что тела с различной поверхностью обладают разной способностью поглощать энергию. Для этого используют теплоприемник, у которого одна поверхность блестящая металлическая, другая черная и шершавая.
В заключении объяснения можно привести примеры излучения в природе и технике (слайд 16-17).
Источник
Внутренняя энергия
Понятие о внутренней энергии.
Чтобы понять, что такое внутренняя энергия, рассмотрим опыт. Опыт № 1: Возьмём свинцовый шарик и бросим его на свинцовую пластинку. Шарик, находящийся на некоторой высоте, обладал потенциальной энергией. Падая на свинцовую пластинку, потенциальная энергия превращается в кинетическую энергию. И в последний момент падения шарик обладает кинетической энергией. Казалось, что после падения шарика на свинцовую пластинку, закон сохранения энергии нарушен. Так как энергия стала равной нулю. Рассмотрим шарик и заметим, что он нагрелся и у него сбоку образовалась вмятина. Это означает, что частицы этого шарика стали располагаться ближе друг другу. Значит у частиц увеличилась внутренняя энергия. И так как шарик нагрелся, частицы начали двигаться быстрее. Значит у них увеличилась кинетическая энергия. Следовательно, потенциальная энергия, которой обладал шарик до падения, перешла во внутреннюю энергию.
Внутренней энергией называют энергию движения и взаимодействия частиц из которых состоит тело.
1.1. От механического движения тела.
1.2. От положения этого тела относительно других тел.
От чего зависит внутренняя энергия
1) Внутренняя энергия зависит от температуры. Чем выше температура, тем частицу движутся быстрее и обладают большей внутренней энергией.
2) Внутренняя энергия зависит от объема тела. Чем меньше объем, тем молекулы располагаются ближе друг к другу, а значит обладают большей внутренней энергией. Сжатый воздух может совершить огромную работу. Пример: Отбойный молоток, который использует шахтер, работает на сжатом воздухе.
3) Внутренняя энергия зависит от агрегатного состояния. Лед, вода и пар, обладают разной внутренней энергией.
Способы изменения внутренней энергии
Совершение работы над телом и наоборот
Опыт № 2: Укрепим тонкостенную латунную трубку на подставке. Нальем в трубку немного эфира и закроем пробкой. Затем трубку обовьём верёвкой. И начнём быстро двигать её то в одну, то в другую сторону. Через некоторое время эфир закипит. И пар выталкивает пробку. Опыт показывает, что внутренняя энергия эфира увеличилась. Ведь он нагрелся и даже закипел. Увеличение внутренней энергии произошло в результате совершения работы при натирании трубки верёвкой. Нагревание тел происходит также при ударах, разгибании и сгибании, то есть при деформации. Внутренняя энергия во всех этих примерах увеличивается. Следовательно, внутреннюю энергию тела можно увеличить, совершая над телом работу. Если же работу совершает само тело, то его внутренняя энергия уменьшается. Проделаем следующий опыт № 3: В толстостенной стеклянный сосуд, закрытый пробкой, накачаем воздух через специальное отверстие в ней. Через некоторое время пробка выскочит из сосуда. В момент, когда пробка выскакивает из сосуда, образуется туман. Это доказывает, что внутренняя энергия воздуха при совершении работы, уменьшается.
Теплопередача
Рассмотрим пример. Опустим в стакан с горячей водой металлическую ложку. Кинетическая энергия молекул горячей воды больше кинетической энергии частиц холодного металла. Молекулы горячей воды будут передавать часть своей кинетической энергии частицам холодного металла. В результате этого энергия молекул воды будет уменьшаться, а энергия частиц металла будет увеличиваться. Температура воды уменьшается, а температура ложки увеличивается. Постепенно их температуры выравниваются. На этом опыте мы наблюдали изменения внутренней энергии тела способом теплопередачи.
Способы теплопередачи
Теплопроводность
Теплопроводностью называют процесс передачи тепла частицами вещества.
Рассмотрим опыт № 4: На металлический стержень, закреплённый в лапке штатива, прикреплены гвозди при помощи парафина. Начнем подогревать один конец стержня. Гвоздики будут падать не сразу, а постепенно. Объясняется это тем, что скорость колебательного движения частиц металла увеличивается в той части проволоки, которая ближе расположена к пламени. Так как частицы постоянно взаимодействуют друг с другом, то увеличивается скорость движения соседних частиц. Начинает повышаться температура следующей части проволоки и так далее. Поэтому при теплопроводности не происходит переноса вещества от одного конца края тела к другому.
Виды веществ по теплопроводности:
К хорошим тепло проводникам относятся металлы, хотя у всех металлов теплопроводность разная.
К плохим тепло проводникам относятся: воздух, сено, солома, бумага, опилки и так далее.
Конвекция
Конвекцией называют процесс передачи тепла струями жидкости или газа.
Установим бумажную вертушку, над электрической лампой. При включении лампы, воздух становиться теплым, легким, поднимается вверх. А холодный тяжелый опускается вниз. Поэтому вертушка начинает вращаться. Такие явления мы наблюдаем при нагревании жидкости. Снизу, нагретые слои жидкости менее плотные и поэтому поднимаются. А холодные, тяжелые опускаются вниз. Благодаря такому движению вся вода равномерно нагревается. Различают два вида конвекции естественную и вынужденную. В комнате при нагревании воздуха, при помощи батареи парового отопления, конвекция происходит естественно. Чтобы происходило явление конвекции, необходимо, вещества нагревать снизу.
Излучение
Излучением называют процесс передачи тепла при помощи электромагнитных волн.
Соединим жидкостный манометр при помощи резиновой трубки с теплоприемником. А если к темной поверхности теплоприемника поднести нагретый кусок металла. То уровень жидкости в колене манометра, соединённого с теплоприемником понизится. Очевидно воздух в теплоприемнике нагрелся и расширился. В данном случае энергии передается путем излучения. Она может осуществляться в полном вакууме. Излучают энергию все тела. И сильно нагретые, и слабо. Например: печь, электрическая лампа, Солнце и другие. Если повернуть теплоприемник к нагретому металлическому телу зеркальной стороной. То столбик жидкости в колене манометра, соединенный с теплоприёмником опустится. Способность тел по-разному поглощать энергию излучения используется на практике. Так, поверхность воздушных шаров, крылья самолётов красят серебристой краской, чтобы они не нагревались солнцем. Если же, наоборот, необходимо использовать солнечную энергию, например, в приборах, установленных на искусственных спутниках земли. То эти части приборов окрашивают в черный цвет.
Источник