Способы изменения свойств стали

Способы изменения свойств стали.

В процессах обработки металлов и сплавов их свойства не остаются постоянными, а изменяются и иногда весьма значительно. Эти изменения приводят к повышению или уменьшению твердости металла или к изменению других свойств. Намеренное изменение свойств металлов производится термической обработкой. Термической обработкой металлов и сплавов называют изменение их свойств путем нагревания, выдержки и охлаждения. Изменение внутреннего строения металлов приводит к изменению их механических свойств: твердости, прочности,, пластичности, вязкости. Не все металлы в одинаковой степени поддаются термической обработке. Некоторые из них почти не изменяют свои свойства при термической обработке, другие изменяют их очень мало, третьи — весьма значительно. Наиболее чувствительна к термической обработке сталь. Низкоуглеродистые стали, содержащие менее 0,3% углерода, слабо изменяют свои свойства, средне-углеродистые—уже заметно, а инструментальные — очень сильно. Широко применяют следующие виды термической обработки стали: отжиг, нормализацию, закалку и отпуск. Отжигом называется процесс нагревания стального изделия до температуры 750 — 860° (критическая точка), а затем очень медленного его охлаждения в течение нескольких часов, часто вместе с нагревательной печью. При отжиге устраняются внутренние напряжения в металле, возникшие ранее от неравномерного остывания, и уменьшается твердость. Отжиг бывает необходимым и потому, что в процессах литья, прокатки и ковки охлаждение стальных изделий происходит неравномерно по толщине металла, они получаются у поверхности более твердыми и с трудом поддаются обработке резанием. Нормализация отличается от отжига только тем, что стальное изделие остывает на воздухе, причем значительно быстрее, чем при отжиге. Нагрев изделий производится до тех же температур, что и при отжиге. При нормализации сталь приобретает мелкозернистую и однородную структуру, но ее прочность и твердость получаются несколько выше, чем при отжиге. Нормализации подвергаются, например, малоуглеродистые мягкие стали (конструкционные). По сравнению с отжигом нормализация более экономичная операция, так как не требует охлажаждения печи. Закалкой называется процесс нагревания стальных изделий до температуры 750 — 790° (или несколько выше), выдержки при этой температуре, в течение которой происходит перестройка структуры металла, и быстрого охлаждения. При закалке резко возрастает твердость стали, ее прочность, но снижается вязкость. Многие ответственные детали машин, изготовляемые из стали, подвергают закалке, например коленчатые валы, шарикоподшипники и почти все инструменты. Температура нагрева стали для закалки зависит от ее химического состава. На рисунке приведен график изменения температур закалки (заштрихованная часть) для сталей с различным содержанием углерода.Нагревание изделий для закалки производят в камерных газовых или электрических печах или в соляных печах-ваннах. Электрические печи (муфельные), удобны тем, что нагрев в них производится’ равномерно и металл не соприкасается с потоком газов, образующихся при сгорании топлива. Кроме того, в них легко регулировать температуру нагрева. Наиболее совершенными являются электрические печи-ванны, где в качестве материала, нагревающего детали, служат расплавленные соли (поваренная соль, хлористый калий, сода и другие), находящиеся в огнеупорном тигле. Детали в такой ванне очень быстро нагреваются, совершенно не соприкасаются с атмосферой и легко могут быть нагреты лишь частично. Отпуск. Для уменьшения хрупкости закаленную сталь подвергают отпуску. Отпуск заключается в повторном нагреве, но уже до более низких температур, чем при закалке, с последующим охлаждением. Различают низкий отпуск — нагрев до температуры 200 — 330°, средний— до 500° и высокий —до 700°. Наиболее часто применяют низкий отпуск. Низкий отпуск производят в масляных и соляных ваннах, а часто и на воздухе. В последнем случае температуру отпуска легко контролировать по появлению цветов побежалости. Так называется похожая на радугу гамма цветов, появляющаяся на зачищенной до блеска поверхности куска стали при нагревании. Каждому цвету соответствует своя температура. Более высокая температура соответствует и более глубокому отпуску. Нагретую до необходимой температуры отпуска деталь охлаждают в воде и тем самым прекращают отпуск на требуемой ступени. Цементация. Для повышения твердости поверхности деталей из малоуглеродистых сталей производят цементацию — науглероживание поверхностного слоя на глубину от нескольких десятых долей до 1—2 мм. Увеличение содержания углерода в стали, помимо повышения износоустойчивости деталей, позволяет производить их закалку. Газовую цементацию также производят при высокой температуре, но карбюризатором служит чаще всего метан, углерод которого входит в химическое соединение с железом. Газовая цементация протекает в два-три раза быстрее, легче поддается регулировке и намного производительнее цементации твердыми карбюризаторами. 4.Как работает сталь при однократном статическом нагружении? В курсе «Сопротивление материалов» проводилась лабораторная работа по изучению поведения круглого стального образца. В результате испытания строилась диаграмма σ—ε. Кстати, более достоверные показатели у плоских образцов, поскольку в круглых возникает объемное напряженное состояние, а металлические стержни, как правило, представляют собой набор плоских пластин. В диаграмме растяжения (рис. 2.1) для малоуглеродистой стали можно отметить три стадии работы: упругую, площадку текучести, самоупрочнеиия. Упругая стадия завершается падением напряжения (зуб текучести) и началом площадки текучести. Напряжение, соответствующее площадке текучести, называют пределом текучести (σт) и играет очень важную роль в теории расчета МК. Второй важный параметр — модуль упругости Е. На первой стадии действует линейный закон или закон Гука σ=Eε, где ε — относительная деформация. Таким образом, модуль упругости является физической характеристикой деформативности материала и имеет размерность напряжения. Для стали E=2,06*10 5 МПа <2,1*10 6 кгс/см 2 ). Длина упругой стадии (εу=σт/E) составляет 0,1. 0,25%, в зависимости от прочности стали. При подходе к площадке текучести в диаграмме заметно отклонение от прямой. Это происходит при напряжении, которое носит название предела пропорциональности (σпц) и используется в некоторых расчетах. На второй стадии деформации растут при неизменных напряжениях, модуль становится равным нулю. Длина площадки текучести 0,2. 2,5%, в зависимости от химического состава стали. В принципе она образуется при наличии углерода 0,1. 0,3%. У высокопрочных сталей площадка текучести отсутствует. На третьей стадии (самоупрочнения), самой протяженной, наблюдается некоторый рост напряжений при значительном возрастании пластических деформаций. В наивысшей точке диаграммы начинает образовываться шейка, площадь сечения быстро уменьшается. Напряжение, соответствующее этому моменту, называется пределом прочности или временным сопротивлением (σв). . Далее условные напряжения, вычисленные по первоначальной площади сечения, -падают, хотя истинные напряжения резко возрастают. Полные остаточные деформации εо интегрально свидетельствуют о пластических свойствах стали. В разных строительных сталях εо=14. 26%. О запасе пластичности косвенно свидетельствует отношение σв/σт. Для малоуглеродистых сталей оно 1,4. 1,5, а для сталей высокой прочности падает до 1,15. Кроме εо применяется еще одна характеристика — относительное сужение поперечного сечения образца: ψ = (A0-Ap)/A0 где А0 — первоначальная площадь; Ар — остаточная площадь после разрушения. Чем больше ψ, тем пластичнее сталь. Характер диаграммы зависит и от температуры образца. При снижении температуры пластичность сковывается, а предел текучести и прочности возрастают (рис. 2.1, кривая г).
Читайте также:  Физический способ дегазации почвы подразумевает

Основы расчета МК

Метод расчета строительных конструкций по предельным состояниям. Предельное состояние-такое состояние конструкции, при котором она перестает удовлетворять заданным эксплуатационным требованиям. При этом нормальная эксплуатация здания или сооружения становится невозможной. Нормальная эксплуатация-которая осуществляется без ограничений в соответствии с нормами и обеспечивается безопасное пребывание людей, штатная работа оборудования и сохранность ограждающих конструкций.

Предельные состояния: первая группа: все виды разрушений (вязкое(пластическое), хрупкое, усталостное), потеря устойчивости сжатых конструкций, чрезмерные пластические деформации, приводящие к качественному изменению конфигурации конструкций, неупругие сдвиги в соединениях. Расчет выполняется на расчетные значения нагрузок.

Вторая группа: сверхнормативные прогибы, амплитуды колебаний и отклонения от вертикали колонн. Расчет выполняется на нормативные значения нагрузок.

Цель расчета по предельным состояниям –не допустить ни одного из возможных предельных состояний при минимальном расходе материалов.

Соединения МК.

По принципу образования соединения делятся на три группы:

1. Механические: кованые, болтовые, заклепочные, самосверлящий самонарезающий винт(саморез), пороховые дюбели, вытяжные заклепки

2. Сварные: электродуговая сварка, полуавтоматическая сварка

Источник

Технология процесса и способы закалки стали

Все о технологии закалки стали: что это такое, для чего нужно, какие способы существуют. Температуры, которым подвергается металл. Как изменяются свойства стали. Методы нагрева и среды охлаждения. Оборудование для термообработки. Дефекты при закалке.

Закалка стали проводится для повышения ее твердости, прочности и износостойкости. Это один из видов термической обработки, при котором металл сначала нагревается до температур, изменяющих его структурное состояние, а затем охлаждается таким образом, чтобы он приобрел требуемый физико-химический состав и необходимую кристаллическую структуру. Существует множество способов закалки стали, приводящих к различным результатам, но все они состоят из двух основных циклов: нагрева до критической точки и охлаждения с определенной скоростью до заданной температуры. Еще одна технологическая операция, используемая в процессе закалки металлов, — это отпуск, при котором структурные изменения происходят после нагрева до невысокой температуры с медленным охлаждением. Возможность изменения характеристик стали посредством закаливания во многом связана с ее изначальной кристаллической структурой и химическим составом, в котором самыми важными компонентами являются углерод и легирующие добавки. Именно они определяют, какой будет форма, размер и конфигурация элементов структуры стали после ее термической обработки.

Читайте также:  Митоз это основной способ деления каких клеток соматических клеток

Какие металлы подлежат калению

Закалка металла — это термическая обработка, которой чаще всего подвергаются углеродистые и легированные стали с целью повышения их твердости и улучшения прочностных характеристик. Несколько реже встречается термообработка цветных металлов, в частности отпуск, отжиг и закалка меди, латуни и бронзы, а также сплавов алюминия и титана. Необходимо отметить, что закаливание этих соединений в отличие от углеродистых сталей не всегда приводит к их упрочнению, некоторые сплавы меди после этого, наоборот, становятся более пластичными и мягкими. Гораздо чаще изделия из цветных металлов подвергаются отпуску для снятия напряжения после отливки, штамповки, прокатки или волочения.

Свойства стали после закалки

Углеродистая сталь в процессе нагрева проходит через ряд фазовых изменений своей структуры, при которых меняется ее состав, а также форма и элементов кристаллической решетки. При критической температуре 723 °C в еще твердом металле начинается распад цементита (карбида железа) и формирование равномерного раствора углерода в железе, который называется аустенит. Это состояние углеродистой стали является исходным для закалки.

При медленном охлаждении аустенит распадается, и металл возвращается в исходное состояние. Если же сталь охлаждать быстро, то аустенит не успевает изменяться, и при определенной скорости охлаждения и пороговых температурах формируются кристаллические решетки и химические составы, придающие ей различные эксплуатационные свойства. Этот процесс называется закалкой, и каждому его виду соответствует определенная структура уже закаленной стали, обладающей определенными техническими характеристиками. Основные фазовые состояния, имеющие значения при закалке, — это перлит, сорбит, троостит и мартенсит (см. рис. ниже).

Самая высокая твердость у стали, закаленной до состояния мартенсита. Таким способом производят закаливание режущего инструмента, а также осуществляют упрочнение поверхностей деталей, подвергающихся в процессе работы трению (втулки, обоймы, валы, шестерни и пр.). После выполнения закалки на троостит сталь становится одновременно твердой и упругой. Этой вид термообработки применяют к ударному инструменту, а также рессорам и пружинным амортизаторам. Для получения таких свойств стали, как стойкость к износу, упругость и вязкость, используют закалку до состояния сорбита. Такая термообработка используется для рельсов и других конструктивных элементов, работающих под постоянной динамической нагрузкой. Перечисленные фазовые состояния свойственны всем углеродистым сталям, но каждая их марка характеризуется своими температурными диапазонами и скоростями охлаждения.

Классификация каления стали

Закаливание в одной среде

Ступенчатая закалка

Ступенчатое закаливание проходит в два этапа. На первом изделие помещается в среду с температурой, превышающей на несколько десятков градусов точку начала возникновения мартенсита. После того, как температура выравнивается по всему объему металла, деталь медленно охлаждается, в результате чего в нем равномерно формируется мартенситная структура.

Изотермическая закалка

При изотермическом закаливании изделие также выдерживается в закалочной ванне при температуре, превышающей точку мартенсита, но несколько дольше. В результате этого аустенит трансформируется в бейнит — одну из разновидностей троостита. Такая сталь сочетает в себе повышенную прочность с пластичностью и вязкостью. Кроме того, после изотермической закалки в изделии снижаются остаточные напряжения.

Закалка с самоотпуском

Светлая закалка

Светлая закалка применяется для стальных изделий, поверхности которых при термообработке не должны подвергаться окислению. При такой термообработке сталь нагревается в вакуумных печах (см. фото ниже) или в инертных газовых средах (азот, аргон и пр.), а охлаждается в неокисляющих жидкостях или расплавах. Этим способом закаливают изделия, которые не должны подвергаться дальнейшей шлифовке, а также детали, критичные к содержанию углерода в поверхностном слое.

Оборудование для термообработки сталей

  • муфельные термопечи;
  • устройства индукционного нагрева;
  • установки для нагрева в расплавах;
  • газоплазменные установки;
  • аппараты лазерной закалки.

Первые три вида могут выполнять прогрев всего объема изделия до требуемой температуры, а последние — только поверхностного слоя металла. Кроме того, выпускаются и широко используются печи для закалки металлов, в которых нагрев осуществляется в вакууме или в среде инертного газа.

ПОСМОТРЕТЬ Индукционный нагреватель на AliExpress от 7 506 рублей →

Закалочные ванны представлены стальными емкостями-охладителями для различных жидкостей, а также специальными тиглями из графита и печами для расплавов солей или металлов. В качестве закалочных жидкостей чаще всего используют минеральное масло, воду и водополимерные смеси. Для расплавов металлов обычно применяют свинец или олово, а для расплавов солей — соединения натрия, калия и бария. Закалочные ванны для жидких сред имеют системы нагрева и охлаждения рабочей жидкости до требуемой температуры, а также мешалки для равномерного распределения жидкости и разрушения паровой рубашки.

Температура для закалки

Марка стали Температура, С
закалки отжига отпуска
15Г 800 780 200
65Г 815 790 400
15Х, 20Х 800 870 400
30Х, 35Х 850 880 450
40Х, 45Х 840 860 400
50Х 830 830 400
50Г2 805 830 200
40ХГ 870 880 550
ОХ13 1050 860 750
3Х13 1050 880 450
35ХГС 870 860 500
30ХГСА 900 860 210
У7, У7А 800 780 170
Р9, Р12 1250 860 580
Р9Ф5, Р9К5 1250 860 590
Р18Ф2 1300 900 590
ШХ15 845 780 400
9ХС 860 730 170
Р18К5Ф2 1280 860 580
1Х14Н18Б2БРГ 1150 860 750
4Х14Н1482М 1200 860 750

Определение температуры нагрева в промышленном производстве осуществляется посредством контактных и бесконтактных пирометров. В последние десятилетия широкое распространение получили инфракрасные приборы, позволяющие дистанционно замерять температуру в любой точки поверхности нагретой детали. Кроме того, приблизительную температуру разогрева стали можно определить по цветовым таблицам.

Технология каления металла

От скорости и температурных параметров охлаждения стали, разогретой выше критической точки, напрямую зависит процесс формирования структуры и состава закаленного металла. К примеру, при быстром охлаждении в воде с комнатной температурой можно получить углеродистую сталь с мартенситной структурой, а при охлаждении в масле или горячей воде получается троостит. Каждой марке стали соответствуют свои характеристики и температурные режимы закалки, которые, помимо прочего, зависят от размера и формы детали. Поэтому на производстве термическая обработка деталей проводится в соответствии с маршрутной технологией и операционными картами, разрабатываемыми для каждого изделия.

Способы охлаждения

  1. Охлаждение в одном компоненте. Изделие погружается в жидкость и остается в ней до полного остывания.
  2. Прерывистая закалка в двух охладителях. Изделие сначала помещают в быстроохлаждающую жидкость, а после достижения заданной температуры переносят в среду с медленным охлаждением.
  3. Струйное охлаждение. Разогретая деталь интенсивно орошается потоком охладителя (см. фото ниже).
  4. Обдув. Поверхность изделия обдувается потоком воздуха или инертного газа.

При практическом применении закалки все эти виды охлаждений могут иметь различные вариации или комбинироваться друг с другом.

Среды охлаждения

Структура Среда охлаждения Твердость (HBW)
1 Мартенсит Холодная вода 500÷750
2 Троостит Масло 350÷500
3 Сорбит Воздух 250÷350
4 Перлит С остыванием печи 150÷250

Влияние скорости охлаждения на конечный результат

При закалке стали охлаждение должно идти со скоростью, предотвращающей распад аустенита на феррит и карбид железа, которое начинает происходить при температуре ниже 650 °C. Дальнейшее снижение температуры следует проводить медленнее, т. к. такая скорость обеспечивает уменьшение внутренних напряжений стали. Быстрое и полное охлаждение в холодной воде позволяет получить мартенсит, который обладает максимальной твердостью, но довольно хрупок. При быстром понижении температуры на 200÷300 °C распад аустенита прекращается, а дальнейшее более медленное охлаждение формирует в стали фазовые состояния с меньшей твердостью, но обладающие повышенной прочностью и износостойкостью. Скорость охлаждения регулируется видом используемой закалочной среды и ее температурой (см. таблицу ниже).

Среда охлаждения Скорость охлаждения (град/сек)
1 Воздух 5
2 Минеральное масло 150
3 Вода при комн. t° 700
4 Вода при 80 °C 1400
5 10%-й р-р хлористого натрия 2100
6 10%-й р-р едкого натра 1600

Отличия закаливаемости от прокаливаемости

Дефекты при закаливании стали

Причиной возникновения дефектов при закалке стали является ряд физических и химических факторов, возникающих при отклонении от заданных параметров термического процесса или из-за неоднородности закаливаемой заготовки. Неравномерный нагрев или охлаждение изделия может привести к его деформации и возникновению внутренних трещин. Эта же причина может вызвать неодинаковость фазовых превращений в различных частях изделия, в результате чего металл будет иметь неоднородную по составу и твердости структуру. Пережог стали происходит вследствие проникновения кислорода в поверхностный слой металла, что приводит к возникновению окислов, разъединяющих его структурные элементы и изменяющих физические свойства поверхностного слоя. Причиной обезуглероживания при закалке стали является выгорание углерода при попадании в печь избыточного количества кислорода. Эти виды дефектов неисправимы, а единственный способ борьбы с ними — это проверка герметичности печи или закалка в вакууме и инертных газах.

Окалины и критическое снижение концентрации углерода при калении

Даже небольшая концентрация кислорода в закалочной печи приводит к появлению поверхностной окалины, которая является следствием окисления металла при его термообработке. Эта же причина может вызвать уменьшение количества углерода в поверхностном слое заготовки. Полностью избавиться от таких явлений можно только путем применения вакуумных печей, обеспечивающих так называемую светлую закалку, а также при нагреве изделия в среде азота или аргона. Для минимизации окисления и обезуглероживания закалочная печь должна быть максимально герметичной, что в какой-то мере ограничивает приток кислорода в ее рабочее пространство.

Для закалки металлов рекомендуют использовать трансформаторное или индустриальное масло И-20. Частнику достать его непросто, поэтому хотелось бы услышать в комментариях к этой статье ваше мнение о возможности использования для закаливания стали отработанного автола или другого автомобильного масла.

Источник

Читайте также:  Написание буквы т двумя способами
Оцените статью
Разные способы