Способы исследования структуры сталей

Материаловедение и термическая обработка сталей. Методы исследования структуры металлов и сплавов

Принято различать структуру металлов и сплавов на: макроструктуру, микроструктуру и тонкую структуру. В зависимости от структуры металлов и сплавов, выделяют три метода их исследования:

  • Макроскопический анализ
  • Микроскопический анализ
  • Рентгеноструктурный анализ и рентгеновская дефектоскопия

Макроскопический анализ.

Макроструктура – это строение металлов и сплавов, что видно невооружённым глазом или при небольших увеличениях с помощью лупы (макс. до 30 раз). Макроструктура изучается путём макроанализа.

Металлы – это непрозрачные вещества и их строение изучают в изломе или специально приготовленных образцах (макрошлифах). Образец вырезают из определённого места, в определённой плоскости в зависимости от того, что подвергают исследованию (литьё, поковку, штамповку, прокат, сварную или термически обработанную деталь) и что необходимо выявить и изучить (первичную кристаллизацию, неоднородность структуры, дефекты, нарушающие сплошность металла). Поэтому, образцы вырезают из одного или нескольких мест слитка (или заготовки, или детали) как в продольном, так и в поперечном направлениях. Поверхность образца (темплета) выравнивают на наждачном круге, а затем шлифуют. После шлифования темплет травят в специальных реактивах, которые по-разному растворяют структурные составляющие и растравливают дефекты.

  • вид излома (хрупкий, вязкий);
  • величину, форму и расположение зерен и дендритов литого металла;
  • дефекты в слитках и отливках (усадочные раковины, газовые пузыри, трещины);
  • дефекты, нарушающие сплошность металла (усадочную пористость, газовые пузыри, раковины, трещины);
  • химическую неоднородность металла, вызванную процессами кристаллизации или созданную термической и химико-термической обработкой;
  • расположение волокон в кованных и штампованных заготовках;
  • трещины, возникающие при обработке давлением или термической обработке, дефекты в сварных швах.

Микроскопический анализ

Более тонким методом исследования структуры и пороков металлов является микроанализ, т. е. изучение структуры металлов при больших увеличениях с помощью металлографического микроскопа.

Микроскопический анализ – изучение поверхности при помощи световых микроскопов, где увеличение в пределах 50…2000 раз позволяет обнаружить элементы структуры размером до 0,2 мкм.

Металлографический микроскоп рассматривает металл в отражённом свете (главное отличие от биологического микроскопа, где предмет рассматривается в проходящем свете). Значительно большее увеличение можно получить при помощи электронного микроскопа, в котором лучи света заменены потоком электронов (при этом достигается увеличение до 100 000 раз).

Поток электронов проходит через изучаемый объект. Изображение является результатом неодинакового рассеяния электронов на объекте. Различают косвенные и прямые методы исследования.

При косвенном методе изучают не сам объект, а его отпечаток – кварцевый или угольный слепок (реплику), отображающий рельеф микрошлифа, для предупреждения вторичного излучения, что искажает картину.

При прямом методе изучают тонкие металлические фольги толщиной до 300 нм, на просвет. Фольги получают непосредственно из изучаемого металла.

Изображение создается за счет вторичной эмиссии электронов, излучаемых поверхностью, на которую падает непрерывно перемещающийся по этой поверхности поток первичных электронов. Изучается непосредственно поверхность металла. Разрешающая способность несколько ниже, чем у просвечивающих микроскопов.

Читайте также:  Презентация по русскому языку способы подчинительной связи

Для изучения микроструктуры также приготавливаются шлифы (микрошлифы). Здесь, после шлифования дополнительно производится полирование до зеркального блеска, затем производят травление шлифа.

Микроанализ позволяет выявить:

  • величину, форму и расположение зёрен;
  • отдельные структурные составляющие сплава, на основании которых можно определить химический состав отожженных углеродистых сталей;
  • качество тепловой обработки (например, глубину проникновения закалки);
  • различные дефекты (пережог, обезуглероживание, наличие неметаллических включений).

Рентгеноструктурный анализ и рентгеновская дефектоскопия

Рентгеновские лучи имеют ту же природу, что и световые лучи, и представляют собой электромагнитные колебания, с длиной их волн от 2 х10 -7 до 10 -9 см (длина световых лучей от 7,5 х10 -5 до 4 х10 -5 см).

Рентгеновские лучи получаются в рентгеновских трубках в результате торможения электронов при их столкновении с поверхностью какого-либо металла. При этом кинетическая энергия электронов превращается в энергию рентгеновских лучей.

Рентгеноструктурный анализ основан на способности атомов отражать рентгеновские лучи в кристаллической решётке. Отражённые лучи оставляют на фотопластинке (рентгенограмме) группу пятен или колец. По характеру их расположения определяют тип кристаллической решётки, а также расстояние между атомами (положительными ионами) в решётке.

Рентгеновское просвечивание основано на способности рентгеновских лучей проникать в глубину тела. Благодаря чему можно, не разрезая металлических изделий, увидеть на рентгеновском снимке различные внутренние дефекты металла (усадочные раковины, трещины, пороки сварки).

Методы регистрации пороков в материале основаны на том, что рентгеновские лучи частично поглощаются, проходя через металл. При этом, менее плотные части металлического изделия (участки с пороками) поглощают лучи слабее, чем плотные (сплошной металл). Это приводит к тому, что на рентгеновском снимке участки с пороками будут иметь тёмные или светлые пятна на фоне сплошного металла.

Современные рентгеновские аппараты позволяют просвечивать стальные изделия на глубину до 60 – 100 мм.

Для выявления дефектов в металлических изделиях большой толщины применяют гамма-лучи. Природа гамма-лучей аналогична рентгеновским лучам, но длина их волн меньше. Благодаря большой проникающей способности гамма-лучей ими можно просвечивать стальные детали толщиной до 300 мм.

Источник

Микроструктурный анализ углеродистых конструкционных сталей

Технические науки

  • Пучков Павел Владимирович , кандидат наук, преподаватель
  • Ивановская пожарно-спасательная академия ГПС МЧС России
  • СТАЛЬ
  • МИКРОШЛИФ
  • МИКРОСТРУКТУРА
  • КРИСТАЛЛ
  • ВЫСОКАЯ ТЕМПЕРАТУРА
  • МЕХАНИЧЕСКИЕ СВОЙСТВА

Похожие материалы

В настоящее время все большим спросом пользуются быстро возводимые конструкции из стали: ангары, фермы, навесы, павильоны, склады и т.д.). Металлоконструкция обладает множеством существенных преимуществ по сравнению с другими способами возведения зданий: меньшей массой (если сравнить с железобетонными изделиями), простотой и серийностью изготовления, легкостью монтажа и демонтажа, удобством и высокой скоростью возведения, возможностью осуществления монтажа крупными блоками, транспортабельностью, легкостью, прочностью и долговечностью, надежностью в эксплуатации.

Несмотря на ряд достоинств металлоконструкций перед другими строительными конструкциями (кирпичными, железобетонными и т.д.), у них есть существенный недостаток. Хотя углеродистая сталь и является негорючим материалом, но она обладает высокой чувствительностью к высоким температурам и к действию окислительной атмосферы воздуха. Сталь в условиях пожара быстро прогревается, что заметно снижает её прочностные свойства см. рис.1.

Нередко в зданиях и сооружениях, содержащих стальные несущие конструкции возникают пожары. Пожары в современных условиях являются одной из главных опасностей человечества, наносящей огромный материальный ущерб экономике. Опасные факторы пожара значительно снижают прочность стали. Следует отметить, что при нагревании стали выше 300°С её предел прочности снижается. На рисунке 1 показана зависимость от температуры модуля упругости Е, предела текучести σтр, предела прочности σвр и удлинения при разрыве δ для малоуглеродистой стали (например: из Ст3 изготавливают швеллеры, уголки и т.д.) в интервале 0-500°С. Как видно из приведенных кривых, модуль упругости в пределах изменения температуры до 300° С практически не меняется. Более существенные изменения претерпевают величина σвр и, особенно, δ, причем имеет место, как говорят, «охрупчивание» стали — удлинение при разрыве уменьшается. При дальнейшем увеличении температуры пластичные свойства стали восстанавливаются, а прочностные показатели быстро падают.

Читайте также:  По способу организации аис могут быть

Как изменяются механические свойства сталей под воздействием высоких температур показано на рисунке 1, а как изменяется микроструктура сталей? На этот вопрос сможет ответить микроструктурный анализ.

Микроструктурный анализ (микроанализ) – это метод исследования внутреннего строения (микроструктуры) металлов и сплавов с помощью металлографических микроскопов при увеличении от 50 до 2000 раз. Микроструктурный анализ позволяет: изучить форму, величину и взаимное расположение зерен, из которых состоит металл (сплав); определить структурно-фазовый состав сплавов; определить неметаллические включения и внутренние дефекты кристаллического строения сплавов; установить, какие изменения внутреннего строения происходят в исследуемом материале (сплаве) под влиянием различного рода воздействий при термической и химико-термической обработке, обработке давлением, сварке и пр. Залогом успеха при проведении микроструктурного анализа является качественная подготовка микрошлифа. Методика подготовки микрошлифа следующая:

Шлифование образца

Плоскость образца шлифуют вручную или на специальных станках (рис. 2).

Шлифование начинают на грубых (крупнозернистых) с абразивным зерном Р 240 до Р600) абразивных бумагах до полного удаления неровностей, наследованных от вырезки образца . Далее переходят к более мелкозернистым абразивным бумагам для уменьшения шероховатости поверхности и заканчивают шлифование на микронных бумагах (Р1500). При переходе с одного номера абразивной бумаги к другому необходимо каждый раз образец механически очищать от абразива и поворачивать на 90º к направлению перемещения его на предыдущей бумаге. Заканчивать шлифование на используемой бумаге следует после полного удаления рисок (царапин), созданных на предыдущей бумаге (рис. 3б).

Полирование образца

Полирование шлифов производят на полировальной установке (станке) с вращающимся металлическим диском, обтянутым тонким сукном, фетром или другим материалом. На ткань полировального круга периодически наносят суспензию (водная взвесь окиси хрома (Cr2O3) в виде мелкозернистого порошка) или автомобильную полировальную пасту, предварительно взбалтывая ее. Поверхность микрошлифа должна приобрести зеркальную поверхность (рис. 3в).

Рисунок 2. Обработка микрошлифа на установке «ШЛИФ – 2М» Рисунок 3. Подготовка микрошлифа:

а — образец изъятый с места аварии для исследования; б – отшлифованный микрошлиф; в – отполированный микрошлиф; г – протравленный микрошлиф

Выявление микроструктуры образца

На отполированный микрошлиф с помощью ватной палочки наносят 3-4% спиртовой раствор азотной кислоты (для углеродистых сталей), затем выдерживают 2-3 секунды до появления признаков протравки, затем нейтрализуют действие травящего состава техническим спиртом, после чего просушивают поверхность шлифа промоканием фильтровальной бумагой (см. рис.3г). Время травления зависит от концентрации реактива, природы металлического материала и, как правило, устанавливается экспериментально по изменению отражательной способности и цвета поверхности шлифа. Признаком достаточной степени травления является исчезновение зеркальности поверхности и приобретение ею светломатового оттенка.

Читайте также:  Какие способы навозоудаления вы знаете
Изучение микроструктуры образца на металлографическом микроскопе

Подготовленный микрошлиф устанавливают на предметный столик металлографического микроскопа с компьютерной обработкой данных, настраивают резкость и контрастность изображения и фотографируют микроструктуру образца. Данный метод приобрел особую актуальность с связи с возросшими темпами строительства быстровозводимых конструкций со стальным несущим каркасом. Известно, что в строительстве быстровозводимых конструкций применяются низкоуглеродистые стали обыкновенного качества марок Ст1, Ст2, Ст3. (например: из Ст3 изготавливают швеллеры, из Ст1, Ст2, Ст3 изготавливают катанку для арматуры, уголки, а из Ст 10, 15, 20 трубы). Такие стали содержат небольшое количество углерода и обладают высокой вязкостью, поэтому такие стали устойчивы к зарождению и распространению усталостных трещин. Усталостные трещины, возникающие в структуре металла очень опасны, так как могут приводить к разрушению конструкции. Микроструктура низкоуглеродистой Ст 3 представляет из себя мелкокристаллическую двухфазную систему, состоящую из перлита (мелкодисперсная механическая смесь феррита и цементита) и феррита. см. рис. 4а.

а — Микроструктура Ст3 без перегрева (черные кристаллы – перлит, белые — феррит); б – Микроструктура Ст3 после воздействия высокой температуры (Т=1100 ºС)

На рисунке 4 мы видим микроструктуры Ст3 до теплового воздействия (рис.4 а) и после воздействия высокой температуры в окислительной атмосфере воздуха (рис.4б).

Ст 3, не подверженная воздействию высокой температуры имеет мелкозернистую структуру, а Ст3, побывавшая в условиях пожара обладает крупнозернистой структурой. Чем меньше размеры кристаллов феррита (кристаллы белого цвета), тем выше прочность и твердость стали. При воздействии высокой температуры кристаллы феррита начинают увеличиваться в размерах, т.к. при большей поверхности кристалла он будет обладать меньшей свободной энергией. Соответственно если эксперт, при изучении микрошлифа стали видит крупнокристаллическую структуру, то он может судить с определенной степенью точности о потере прочности данной конструкции.

Список литературы

  1. Пучков П. В., Киселев В.В., Топоров А.В. Поведение конструкционных углеродистых сталей в условиях пожара. Современные пожаробезопасные материалы и изделия: технология, свойства, применение: сборник материалов IV межвузовского научно-практического семинара (22 мая 2014 г.) / сост. С.В. Беляев. – Иваново: Отделение организации научных исследований экспертно-консалтингового отдела Ивановского института ГПС МЧС России, 2014 г. с.
  2. Страхов В. Л., Кругов А. М., Давыдкин Н. Ф. Огнезащита строительных кон­струкций. — М.: ТИМР, 2000. — 436 с.
  3. Романенков И. Г., Зигерн-Корн В.Н. Огнестойкость строительных конструкций из эффективных материалов. — М.: Изд. Стройиздат, 1984.- с.28.

Завершение формирования электронного архива по направлению «Науки о Земле и энергетика»

Создание электронного архива по направлению «Науки о Земле и энергетика»

Электронное периодическое издание зарегистрировано в Федеральной службе по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), свидетельство о регистрации СМИ — ЭЛ № ФС77-41429 от 23.07.2010 г.

Соучредители СМИ: Долганов А.А., Майоров Е.В.

Источник

Оцените статью
Разные способы