Способы графического изображения экстенсивного показателя

Пример расчета экстенсивного показателя:

В районе А. в текущем году было зарегистрировано 500 случаев инфекционных заболеваний, из них:

эпидемического гепатита — 60 случаев;

кори — 100 случаев;

прочих инфекционных заболеваний — 340 случаев.

Задание: определить структуру инфекционных заболеваний, проанализировать и представить графически.

Решение: вся совокупность — 500 случаев инфекционных заболеваний принимается за 100%, составные части определяются как искомые.

Удельный вес случаев эпидемического гепатита составит:

Аналогично рассчитывается удельный вес других заболеваний.

Вывод: в структуре инфекционных заболеваний доля эпидемического гепатита составила 12%, кори — 20%, прочих инфекционных заболеваний — 68%.

Способы графического изображения экстенсивного показателя

Поскольку экстенсивный показатель — показатель статики, то графически он изображается только в виде внутристолбиковой или секторной (круговой) диаграмм, которые являются разновидностями плоскостных диаграмм.

Правила построения указанных диаграмм можно представить, использовав при этом полученные данные удельного веса заболеваний в приведенном выше примере.

Пример построения секторной диаграммы (диаграмма 1):

1. Радиусом произвольного размера описывается окружность, которая принимается за 100% (если экстенсивные показатели выражены в процентах); при этом 1% соответствует 3,6° окружности.

2. На окружности откладываются отрезки, соответствующие величинам распределяемой совокупности: удельный вес кори составляет 20%, эпидемического гепатита — 12%, прочих инфекционных заболеваний — 68% (соответственно в градусах — 72°; 43,2°; 244,8°).

3. Соответствующие этим градусам отрезки соединяются линиями с центром окружности, образуя секторы.

Каждый сектор представляет составную часть изучаемой совокупности. При этом необходимо помнить, что сумма всех удельных весов должна равняться 1%, а сумма отрезков в градусах должна составлять 360°.

Диаграмма 1. «Распределение инфекционных заболеваний по нозологическим формам (в % к итогу)»

Пример построения внутристолбиковой диаграммы (диаграмма 2):

Вышеизложенные данные можно представить также в виде внутристолбиковой диаграммы, принцип построения которой заключается в следующем: высота прямоугольника (масштаб выбирается произвольно) составляет всю совокупность и принимается за 100%.

Удельный вес отдельных частей следует показать внутри прямоугольника, расположив части снизу вверх в порядке убывания процентов, при этом группа «прочие заболевания», так же как и в секторной диаграмме, откладывается последней. Все части выделяются различной штриховкой или расцветкой.

Каждый график должен иметь номер, четкое название, раскрывающее его сущность, масштаб с указанием единиц измерения и экспликацию, отражающую смысл принятых условных изображений.

Диаграммы 2 «Распределение инфекционных заболеваний в районе по нозологическим формам (в % к итогу)»

Диаграмма 2. «Распределение инфекционных заболеваний по нозологическим формам (в % к итогу)»

Если исследователь хочет выделить графически только одну составную часть совокупности, то график будет выглядеть следующим образом:

Диаграмма 3. «Удельный вес (доля) случаев эпидемического гепатита среди всех инфекционных заболеваний (в % к итогу)».

Интенсивный показатель — показатель частоты, уровня, распространенности процессов, явлений, совершающихся в определенной среде. Он показывает, как часто встречается изучаемое явление в среде, которая его продуцирует (заболеваемость, смертность, рождаемость и т.д.).

Интенсивные показатели используются как для сравнения, сопоставления динамики частоты изучаемого явления во времени, так и для сравнения, сопоставления частоты этого же явления в один и тот же промежуток времени, но в различных учреждениях, на различных территориях и т.д.

Для расчета интенсивного показателя необходимо иметь данные об абсолютном размере явления и среды. Абсолютное число, характеризующее размер явления, делится на абсолютное число, показывающее размер среды, внутри которой произошло данное явление, и умножается на 100, 1000 и т.д.

Таким образом, способ получения интенсивного показателя выглядит следующим образом:

Таким образом, для расчета интенсивного показателя всегда нужны две статистические совокупности (совокупность № 1 — явление, совокупность № 2 — среда), причем изменение размера среды может повлечь за собой изменение размера явления.

Читайте также:  Государство это определенный способ организации общества

Множитель (основание) зависит от распространенности явления в среде — чем реже оно встречается, тем больше множитель. В практике для вычисления некоторых интенсивных показателей множители (основания) являются общепринятыми (так, например, показатели заболеваемости с временной утратой трудоспособности рассчитываются на 100 работающих или учащихся, показатели летальности, частоты осложнений и рецидивов заболеваний — на 100 больных, демографические показатели и многие показатели заболеваемости — на 1000 населения).

Источник

Способы графического изображения экстенсивного показателя

Поскольку экстенсивный показатель — показатель статики, то графически он изображается только в виде внутри столбиковой или секторной (круговой) диаграммы, которые являются разновидностями плоскостных диаграмм, которые представляют цифровые данные в виде геометрических фигур в двух измерениях.

в) соотношения — представляют собой соотношение двух самостоятельных, независимых друг от друга, качественно разнородных величин, сопоставляемых только логически.

Примеры использования в работе врача: показатели обеспеченности населения врачами, больничными койками; показатели, отражающие число лабораторных исследований на 1 врача и т.д.

г) наглядности — применяются с целью более наглядного и доступного сравнения статистических величин. Показатели наглядности представляют удобный способ преобразования абсолютных, относительных или средних величин в легкую для сравнения форму. При вычислении этих показателей одна из сравниваемых величин приравнивается к 100 (или 1), а остальные величины пересчитываются соответственно этому числу.

Показатели наглядности указывают, на сколько процентов или во сколько раз произошло увеличение или уменьшение сравниваемых величин. Показатели наглядности используются чаше всего для сравнения данных в динамике, чтобы представить закономерности изучаемого явления в более наглядной форме.

При пользовании относительными величинами могут быть допущены некоторые ошибки:

1. иногда судят об изменении частоты явления на основе экстенсивных показателей, которые характеризуют структуру явления, а не его интенсивность.

2. нельзя складывать и вычитать статистические показатели, которые рассчитаны из совокупностей, имеющих разную численность, ибо это приводит к грубым искажениям показателя.

3. при расчете специальных показателей следует правильно выбирать знаменатель для расчета показателя: например, показатель послеоперационной летальности необходимо рассчитывать по отношению к оперированным, а не всем больным.

4. при анализе показателей следует учитывать фактор времени: нельзя сравнивать между собой показатели, вычисленные за различные периоды времени (показатель заболеваемости за год и за полугодие), что может привести к ошибочным суждениям.

5. нельзя сравнивать между собой общие интенсивные показатели, вычисленные из неоднородных по составу совокупностей, поскольку неоднородность состава среды может влиять на величину интенсивного показателя.

Динамические ряды, их виды.

Динамический ряд — это ряд статистических однородных величин, показывающих изменение какого-то явления в последовательные периоды времени. Его также называют хронологическим.

Числа, составляющие динамический ряд, являются уровнями динамического ряда.

Ряды могут быть простыми и сложными. В простых рядах уровни представлены абсолютными величинами. Различают два вида простых рядов: интервальный (состоит из последовательного ряда уровней, характеризующих изменения явления за определённый интервал времени) и моментный (представлен уровнями, определяющими размеры явления на определённую дату (момент).

Сложный ряд формируется из относительных или средних величин.

Показатели динамического ряда, вычисление, применение во врачебной деятельности.

Абсолютный уровень ряда-величины (уровни), из которых состоит динамический ряд (отражают явления на определенный момент или интервал времени))

Абсолютный прирост представляет собой разность между последующим и предыдущим уровнем.

Темп роста— это отношение последующего уровня к предыдущему, умноженное на 100%.

Темп прироста является отношением абсолютного прироста (снижения) к предыдущему уровню, умноженным на 100%.

Значение 1% прироста определяется отношением абсолютного прироста к темпу прироста.

Читайте также:  Инвестиции как способ заработка проект

Показатель наглядности (показывает отношение каждого уровня ряда к одному из них, чаще начальному, принятому за 100%).

Вариационный ряд, его элементы, виды, правила построения.

Вариационный ряд- ряд однородных статистических величин, характеризующих один и тот же количественный учетный признак, отличающихся друг от друга по своей величине и расположенных в определенном порядке (убывания или возрастания).

Элементы вариационного ряда:

а) варианта — v- числовое значение изучаемого меняющегося количественного признака.

б) частота — p или f- повторяемость вариант в вариационном ряду, показывающая, как часто встречается та или иная варианта в составе данного ряда.

в) общее число наблюдений- n- сумма всех частот: n=ΣΡ. Если общее число наблюдений более 30,статистическая выборка считается большой, если n меньше или равно 30 -малой.

Вариационные ряды бывают:

в зависимости от частоты встречаемости признака:

а) простой — ряд — каждая варианта встречается один раз, т.е. частоты равны единице.

б) обычный — ряд, в котором варианты встречаются более одного раза.

в) сгруппированный — ряд, в котором варианты объединены в группы по их величине в пределах определенного интервала с указанием частоты повторяемости всех вариант, входящих в группу.

Сгруппированный вариационный ряд используют при большом числе наблюдений и большом размахе крайних значений вариант.

Обработка вариационного ряда заключается в получении параметров вариационного ряда (средней величины, среднего квадратического отклонения и средней ошибки средней величины).

3. в зависимости от числа наблюдений:

а) четные и нечетные

б) большой (при числе наблюдений больше 30) и малый (если число наблюдений меньше или равно 30)

Средние величины, виды, методики расчета. Применение в работе врача.

Средние величины дают обобщающую характеристику статистической совокупности по определенному изменяющемуся количественному признаку. Средняя величина характеризует весь ряд наблюдений одним числом, выражающим общую меру изучаемого признака. Она нивелирует случайные отклонения отдельных наблюдений и дает типичную характеристику количественного признака.

Требования к средним величинам:

1) качественная однородность совокупности, для которой рассчитывается средняя величина — только тогда она будет объективно отображать характерные особенности изучаемого явления.

2) средняя величина должна основываться на массовом обобщении изучаемого признака, т.к. только тогда она выражает типичные размеры признака

Средние величины получаются из рядов распределения (вариационных рядов).

Виды средних величин:

а) мода (Мо) — величина признака, чаще других встречающаяся в совокупности. За моду принимают варианту, которой соответствует наибольшее количество частот вариационного ряда.

б) Медиана (Me) — величина признака, занимающая срединное значение в вариационном ряду. Она делит вариационный ряд на две равные части.

На величину моды и медианы не оказывают влияния числовые значения крайних вариант, имеющихся в вариационном ряду. Они не всегда могут точно характеризовать вариационный ряд и применяются в медицинской статистике относительно редко. Более точно характеризует вариационный ряд средняя арифметическая величина.

в) Средняя арифметическая (М, или ) — рассчитывается на основе всех числовых значений изучаемого признака.

Реже применяются другие средние величины: средняя геометрическая (при обработке результатов титрования антител, токсинов, вакцин); средняя квадратическая (при определении среднего диаметра среза клеток, результатов накожных иммунологических проб); средняя кубическая (для определения среднего объема опухолей) и другие.

Источник

Способы графического изображения экстенсивного показателя

Пример расчета экстенсивного показателя

В районе А в текущем году было зарегистрировано 500 случаев инфекционных заболеваний, из них: эпидемического паротита — 60 случаев; кори — 100 случаев; прочих инфекционных заболеваний — 340 случаев.
Задание: определить структуру инфекционных заболеваний, проанализировать и представить графически.
Решение: Вся совокупность — 500 случаев инфекционных заболеваний принимается за 100 %, составные части определяются как искомые. Удельный вес случаев эпидемического паротита составит: 60 x 100% / 500 = 12%.
Аналогично рассчитывается удельный вес других заболеваний.

Читайте также:  Существительное столовая образовано морфолого синтаксическим способом

Вывод. В структуре инфекционных заболеваний доля эпидемического паротита составила 12%, кори — 20%, прочих инфекционных заболеваний — 68%.

Способы графического изображения экстенсивного показателя

Поскольку экстенсивный показатель — показатель статики, то графически он изображается только в виде внутристолбиковой или секторной (круговой) диаграммы, которые являются разновидностями плоскостных диаграмм, которые представляют цифровые данные в виде геометрических фигур в двух измерениях.

Правила построения этих диаграмм можно представить, использовав при этом полученные данные удельного веса заболеваний в приведенном выше примере.

Пример построения секторной диаграммы (диаграмма 1, А):

1. Радиусом произвольного размера описывается окружность, которая принимается за 100% (если экстенсивные показатели выражены в процентах); при этом 1% соответствует 3,6° окружности.

2. На окружности откладываются отрезки, соответствующие величинам распределяемой совокупности: удельный вес кори составляет 20%, эпидемического гепатита — 12%, прочих инфекционных заболеваний — 68% (соответственно в градусах — 72°; 43,2°; 244,8°).

3. Соответствующие этим градусам отрезки соединяются линиями с центром окружности, образуя секторы. Каждый сектор представляет составную часть изучаемой совокупности. При этом необходимо помнить, что сумма всех удельных весов должна равняться 1%, а сумма отрезков в градусах должна составлять 360°.

Пример построения внутристолбиковой диаграммы (диаграмма 1, Б):

Вышеизложенные данные можно представить также в виде внутристолбиковой диаграммы, принцип построения которой заключается в следующем: высота прямоугольника (масштаб выбирается произвольно) составляет всю совокупность и принимается за 100%. Удельный вес отдельных частей следует показать внутри прямоугольника, расположив части снизу вверх в порядке убывания процентов, при этом группа «прочие заболевания», так же как и в секторной диаграмме, откладывается последней. Все части выделяются различной штриховкой или расцветкой.

Каждый график должен иметь номер, четкое название, раскрывающее его сущность, масштаб с указанием единиц измерения и экспликацию, отражающую смысл принятых условных изображений.

Интенсивный показатель

Показатель частоты, уровня, распространенности процессов, явлений, совершающихся в определенной среде. Он показывает, как часто встречается изучаемое явление в среде, которая его продуцирует (заболеваемость, смертность, рождаемость и т.д.).

Интенсивные показатели используются как для сравнения, сопоставления динамики частоты изучаемого явления во времени, так и для сравнения, сопоставления частоты этого же явления в один и тот же промежуток времени, но в различных учреждениях, на различных территориях и т.д.

Для расчета интенсивного показателя необходимо иметь данные об абсолютном размере явления и среды, его продуцирующей. Абсолютное число, характеризующее размер явления, делится на абсолютное число, показывающее размер среды, внутри которой произошло данное явление, и умножается на 100, 1000 и т.д.

Таким образом, способ получения интенсивного показателя выглядит следующим образом:

Таким образом, для расчета интенсивного показателя всегда нужны две статистические совокупности (совокупность № 1 — явление, совокупность № 2 — среда), причем изменение размера среды может повлечь за собой изменение размера явления.

Множитель (основание) зависит от распространенности явления в среде — чем реже оно встречается, тем больше множитель. В практике для вычисления некоторых интенсивных показателей множители (основания) являются общепринятыми (так, например, показатели заболеваемости с временной утратой трудоспособности рассчитываются на 100 работающих или учащихся, показатели летальности, частоты осложнений и рецидивов заболеваний — на 100 больных, демографические показатели и многие показатели заболеваемости — на 1000, 100 000 населения).

Пример расчета интенсивного показателя.
В городе проживает 120 000 человек (среда). В предыдущем году родилось 108 детей (явление).
Определить показатель рождаемости (рассчитывается на 1000 населения).
Таким образом, рождаемость в городе составила 9%.

Источник

Оцените статью
Разные способы