- Способы генной инженерии кратко
- Генетическая инженерия (методы, генная инженерия, основы)
- Основы генетической инженерии
- Методы генетической инженерии
- Полезно знать
- Что такое генная инженерия
- Генная инженерия – что это такое
- Какие проблемы решает генная инженерия
- Чем отличаются генетическая селекция и генная инженерия
- Комментарии и отзывы (2)
Способы генной инженерии кратко
Генная, или генетическая инженерия ( genetic engineering , genetic modification technology ) – это совокупность биотехнологических методов, позволяющих создавать синтетические системы на молекулярно-биологическом уровне
Генная инженерия дает возможность конструировать функционально активные структуры в форме рекомбинантных нуклеиновых кислот: рекДНК ( recDNA ) или рекРНК ( recRNA ) – вне биологических систем ( in vitro ), а затем вводить их в клетки.
Возможность прямой (горизонтальной) передачи генетической информации от одного биологического вида другому была доказана в опытах Ф. Гриффита с пневмококками (1928).
Однако генная инженерия как технология рекДНК возникла в 1972 г., когда в лаборатории П. Берга ( Станфордский ун-т, США) была получена первая рекомбинантная (гибридная) ДНК ( рекДНК ), в которой были соединены фрагменты ДНК фага лямбда и кишечной палочки с кольцевой ДНК обезьяньего вируса SV 40.
С начала 1980-х гг. достижения генной инженерии начинают использоваться на практике.
С 1996 г. генетически модифицированные растения ( genetic modified plants ) начинают использоваться в сельском хозяйстве.
Задачи генной инженерии
Основные направления генетической модификации организмов:
– придание устойчивости к ядохимикатам (например, к определенным гербицидам);
– придание устойчивости к вредителям и болезням (например, Bt -модификация);
– повышение продуктивности (например, быстрый рост трансгенного лосося);
– придание особых качеств (например, изменение химического состава).
Методы генной инженерии
Методы генной инженерии основаны на получении фрагментов исходной ДНК и их модификации.
Для получения исходных фрагментов ДНК разных организмов используется несколько способов:
– Получение фрагментов ДНК из природного материала путем разрезания исходной ДНК с помощью специфических нуклеаз ( рестриктаз ).
– Прямой химический синтез ДНК, например, для создания зондов.
– Синтез комплементарной ДНК (кДНК) на матрице мРНК с использованием фермента обратной транскриптазы (ревертазы).
Выделенные участки ДНК встраивают в векторы переноса ДНК. Векторы ДНК – это небольшие молекулы ДНК, способные проникать в другие клетки и реплицироваться в них.
В состав вектора ДНК входит не менее трех групп генов:
1. Целевые гены, которые интересуют экспериментатора.
2. Гены, отвечающие за репликацию вектора, его интеграцию в ДНК клетки-хозяина и экспрессию требуемых генов.
3. Гены-маркеры (селективные, репортерные гены), по деятельности которых можно судить об успешности трансформации (например, гены устойчивости к антибиотикам или гены, отвечающие за синтез белков, светящихся в ультрафиолетовом свете).
Для внедрения векторов в прокариотические или эукариотические клетки используют различные способы, например:
1. Биотрансформация . Используются векторы, способные сами проникать в клетки. Частным случаем биотрансформации является агробактериальная трансформация.
2. Микроинъекции . Используются, если клетки, подлежащие трансформации, достаточно крупные (например, икринки, пыльцевые трубки).
3. Биобаллистика ( биолистика ) . Векторы «вбивают» в клетки с помощью специальных «пушек».
4. Комбинированные методы, например, сочетание агробактериальной трансформации и биолистики .
В качестве векторов часто используют плазмиды (кольцевые молекулы ДНК прокариотических клеток), а также ДНК вирусов. У эукариот в качестве векторов используют мобильные генетические элементы – участки хромосом, способные образовывать множество копий и встраиваться в другие хромосомы. В составе одного вектора можно комбинировать различные фрагменты ДНК (различные гены). Вновь образованные фрагменты ДНК называют рекомбинантными.
Векторы переноса ДНК вместе с внедренными фрагментами ДНК различными способами вводят в прокариотические или эукариотические клетки и получают трансгенные клетки. В ходе размножения трансгенных клеток происходит клонирование требуемых фрагментов ДНК, в частности, отдельных генов. Клонированные гены эукариот подвергают различным модификациям (например, добавляют перед ними определенные промоторы) и внедряют в клетки-продуценты. Основная проблема состоит в том, чтобы чужеродные гены экспрессировались постоянно, то есть должен происходить синтез необходимых веществ без ущерба для клетки–хозяина.
Практические достижения современной генной инженерии заключаются в следующем:
– Созданы банки генов, или клонотеки , представляющие собой коллекции клонов бактерий. Каждый из этих клонов содержит фрагменты ДНК определенного организма (дрозофилы, человека и других).
– На основе трансформированных штаммов вирусов, бактерий и дрожжей осуществляется промышленное производство инсулина, интерферона, гормональных препаратов. На стадии испытаний находится производство белков, позволяющих сохранить свертываемость крови при гемофилии, и других лекарственных препаратов.
– Созданы трансгенные высшие организмы (многие растения, некоторые рыбы и млекопитающие) в клетках которых успешно функционируют гены совершенно других организмов. Широко известны генетически защищенные генно-модифицированные растения (ГМР), устойчивые к высоких дозам определенных гербицидов, а также Bt -модифицированные растения, устойчивые к вредителям. Среди трансгенных растений лидирующие позиции занимают: соя, кукуруза, хлопок, рапс.
Эколого-генетические риски ГМ-технологий
Генная инженерия относится к технологиям высокого уровня ( high technology ). В противоположность технологиям низкого уровня, высокие биотехнологии характеризуются высокой наукоемкостью, т.е. использованием рабочих систем, полученных с использованием самых современных методов экологии, генетики, микробиологии, цитологии, молекулярной биологии. Материалы, применяемые в высоких биотехнологиях, часто нуждаются в специальной подготовке. Для реализации таких технологий требуется специальное технологическое оборудование, обслуживаемое квалифицированными специалистами. Из-за нехватки таких специалистов расширение высокотехнологичного производства сопровождается его автоматизацией и компьютеризацией.
ГМ-технологии ( GM — technology ) используются как в рамках обычного сельскохозяйственного производства, так и в других областях человеческой деятельности: в здравоохранении, в промышленности, в различных областях науки, при планировании и проведении природоохранных мероприятий.
Любые технологии высокого уровня могут быть опасными для человека и окружающей его среды, поскольку последствия их применения непредсказуемы. Поэтому технологии генной инженерии ( GM — technology ) вызывают у населения вполне понятное недоверие.
Для снижения вероятности неблагоприятных эколого-генетических последствий применения генно-инженерных технологий постоянно разрабатываются новые подходы. Например, трансгенез ( внедрение в геном генетически модифицируемого организма чужеродных генов ) в ближайшем будущем может быть вытеснен цисгенезом ( внедрение в геном генетически модифицируемого организма генов этого же или близкородственного вида ).
© Афонин Алексей Алексеевич
Доктор с.-х. наук, профессор Брянского государственного университета
Зав. лабораторией популяционной цитогенетики НИИ ФиПИ БГУ
главная страница сайта ОБЩАЯ И ТЕОРЕТИЧЕСКАЯ БИОЛОГИЯ http :// afonin -59- bio . narod . ru
Источник
Генетическая инженерия (методы, генная инженерия, основы)
Основы генетической инженерии
Генетическая инженерия (от греческого слова — Genesis — происхождение) — направление науки на рубеже молекулярной биологии, молекулярной генетики, биотехнологии и т.д., целью которой является создание организмов с новыми совокупности наследственных признаков, в т.ч. и таких, которые не проявляют в природе.
Это осуществляется путем направленного переноса человеком конкретных генов или их комплексов из одного организма в другой, закрепление этих генов в новом генетическом окружении и обеспечения их выражение в определенной генетической системе.
Методы генетической инженерии
В генетической генной инженерии используют такие способы:
- слияние соматических (неполовых) клеток или протопластов различных клеток одного или разных видов организмов (см. Соматическая гибридизация);
- перенос из одной клетки в другую ядер клеток, хромосом или их фрагментов;
- введение в клетки конкретных генов.
Последний способ применяет специальное направление методов генетической инженерии — генная инженерия, основной задачей которой является получение конкретных генов, определяющих тот или иной признак клетки или организма.
Эта задача решается химическим синтезом гена путем:
- объединения нуклеотидов ДНК в определенной последовательности
- ферментативным синтезом ДНК на матрицах информационной РНК с помощью обратной транскриптазы
- фрагментирования тотальной ДНК клетки и последующим выбором фрагментов
- получением или созданием векторных молекул — молекул ДНК, способных присоединять фрагменты молекул ДНК любого происхождения, проникать в клетки и размножаться в них в автономном или интегрированном состоянии
Такие векторные молекулы создан на базе бактериофагов и плазмид. Возможны и другие типы векторных молекул.
Методы генетической инженерии призваны решать фундаментальные научные задачи, связанные со структурой и организацией геномов, а также с особенностями функционирования их в различных организмах.
Перед генетической генной инженерией также стоят важные задачи прикладного характера:
разработка новых методов создания высокопроизводительных штаммов — продуцентов микроорганизмов, сортов растений и пород животных, а в перспективе — гемотерапия наследственных заболеваний человека.
Исследования по основам генетической инженерии начали интенсивно развиваться в 70-е годы XX в.
Среди практических достижений методов генетической инженерии важнейшими является создание продуцентов биологически активных протеинов:
- интерферона
- инсулина
- гормона роста и т.д.
- а также разработка способов активизации цепей обмена веществ, связанных с образованием низкомолекулярных биологически активных соединений
Таким образом получено продуценты некоторых аминокислот, антибиотиков, витаминов, во много раз эффективнее по сравнению с выведенными с помощью традиционных методов селекции и генетики.
Генетическая генная инженерия разрабатывает способы получения чисто протиновых вакцин против вирусов герпеса, гриппа, гепатита, ящура. Реализована идея использования для вакцинации комбинированного вируса осповакцины, в геном которого встроены гены, кодирующие синтез протеинов других вирусов (например, вирусов гриппа или гепатита). В результате вакцинации таким вирусом организм получает возможность выработать иммунитет не только против оспы, но и против гепатита, гриппа или другой инфекционной болезни, вызванной вирусом, синтез протеина которого кодируется встроенным геном.
Полезно знать
© VetConsult+, 2015. Все права защищены. Использование любых материалов, размещённых на сайте, разрешается при условии ссылки на ресурс. При копировании либо частичном использовании материалов со страниц сайта обязательно размещать прямую открытую для поисковых систем гиперссылку, расположенную в подзаголовке или в первом абзаце статьи.
Источник
Что такое генная инженерия
Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Развитие науки, начиная с 20 века, идет вперед семимильными шагами.
Подчас мы не успеваем вникнуть, что же еще новенького открыли и изобрели ученые, принимаем новое как данность. Но «человеку разумному» не пристало быть невежественным.
Поэтому приоткроем завесу тайны над одной из актуальнейших тем последних пятидесяти лет. Поговорим сегодня о том, что такое генная инженерия, для чего она нужна, и чем отличается от генетической селекции.
Генная инженерия – что это такое
Все живые организмы на Земле – это сложные биологические системы, развитие которых происходит по запрограммированному алгоритму. Данный алгоритм записан в молекулах ДНК (дезоксирибонуклеиновой кислоты). В этой макромолекуле зашифрованы сведения о наследственной генетической информации.
ДНК состоит из генов. Каждый из них отвечает за какой-либо наследственный признак или участвует в формировании ряда признаков.
Внешняя среда может лишь в незначительной степени влиять на изменение запрограммированного природой алгоритма.
Развитие науки во второй половине 20 века сделало возможным изучить строение ДНК и научиться корректировать гены. Так возникло новое направление в науке, получившее название генной (генетической) инженерии.
Примечание: правильно ставить ударение на третий слог (инженЕрии). Слово «инженерия» произошло от латинского «ingenium», что значит «изобретательность». Подразумевается изобретение и применение определенных способов воздействия на какие-либо материальные объекты.
Следовательно, генетическая инженерия – это комплекс методов, приемов и технологий, применяемых для проведения манипуляций с генами.
Генная инженерия (ГИ) относится к технологиям высокого уровня, в ней используются новейшие достижения микробиологии, вирусологии, биологии.
Методы генной инженерии (т.е. способы, с помощью которых ученые добиваются поставленных целей):
- полиплоидия – количественное увеличение хромосомных наборов;
- слияние протопластов – объединение клеток или их частей;
- трансгенез – добавление генов от других видов (например, введение в ДНК папайи вируса пятнистости для придания фрукту устойчивости к поражению этим заболеванием);
- корректирование генома в зависимости от желаемых характеристик.
ГИ дает возможность «конструировать» новые клетки ДНК и РНК (рибонуклеиновой кислоты), используя ДНК и РНК других биологических объектов.
Для справки: ДНК хранит наследственную информацию, а РНК – переносит ее. Процессы манипуляции с генами осуществляются вне живого организма, а затем вводятся в него уже измененными.
Этапы манипуляций с генами:
- выделение из цепочки ДНК того или иного гена;
- введение инородного гена в модифицируемую молекулу ДНК;
- внедрение модифицированного ДНК в живой организм;
- отбор удачных генно-модифицированных организмов (ГМО) и утилизация неудачных.
Наиболее наглядный пример результатов генной инженерии – это клонирование (получение генетической копии) в 1996 году овечки, названной Долли (умерла в 2003 году).
Другие примеры менее наглядны, но более практичны: это генно-модифицированная (ГМ) кукуруза, соя и другие сельскохозяйственные культуры. Так, в США на долю ГМ сои приходится до 85 % от всего объема выращенной культуры. ГМ растения начали использовать в сельском хозяйстве начиная с 1996 года.
Научились модифицировать на генном уровне и рыб. В ДНК генно-модифицированного лосося ввели дополнительный гормон роста. Благодаря этому рыба растет в 2 раза быстрее своих собратьев.
Какие проблемы решает генная инженерия
Цель генной инженерии – изменение свойств и характеристик живых организмов посредством воздействия на их геном (совокупность генов).
В частности, ГИ занимается решением следующих проблем:
- придание устойчивости к определенным ядохимикатам (например, у сельхозкультур – к гербицидам);
- получение устойчивости к болезням и вредителям;
- увеличение продуктивности ГМО;
- создание особых качеств и характеристик у модифицируемого объекта.
Изначально с помощью ГИ ученые добивались выведения сельскохозяйственных культур, устойчивых к болезням и дающим рекордные урожаи. Цель – устранение угрозы голода на Земле.
В наши дни цели уже куда масштабней – ученые пытаются посредством ГИ создать способы борьбы с такими серьезными заболеваниями, как ВИЧ или онкология, производить человеческий инсулин с использованием генетически модифицированных бактерий.
Достижения генной инженерии:
- создание банка генов клонов бактерий с частицами ДНК различных биологических организмов, в том числе – человека;
- промышленное производство инсулина, интерферона, гормональных фармацевтических препаратов на основе ГМ штаммов вирусов, бактерий и дрожжей;
- создание высших биологических организмов (растений, рыб, млекопитающих).
Чем отличаются генетическая селекция и генная инженерия
Основное, чем отличается генетическая селекция и генная инженерия – это подход к решению одной и той же проблемы.
В первом случае – это отбор и скрещивание биологических объектов с нужными характеристиками. Во втором – это создание ГМО с желаемыми характеристиками посредством вмешательства в структуру ДНК, т.е. модифицирование генотипа встраиванием в него определенного гена (генов).
Селекция – это тип искусственного отбора, осуществляемом человеком для получения определенных качеств биологического объекта.
Например, выведение новых пород животных одного вида (собаки, кошки, куры, коровы и т.д.). Селекция используется для усиления желаемых качеств без насильственного вмешательства в ДНК. Проводится путем скрещивания особей разного пола, т.е. биологическим методом полового размножения.
С помощью ГИ можно получить биологический объект от родителей разной видовой принадлежности, встроив в ДНК одной особи чужеродный ген объекта другого вида.
Изменения в геноме при ГИ осуществляются целенаправленно, а при селекции коррекция генома происходит случайным образом.
Узнавайте новое вместе с нами!
Автор статьи: Елена Копейкина
Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru
Эта статья относится к рубрикам:
Комментарии и отзывы (2)
Если честно, меня немного пугает генная инженерия, неизвестно куда она может привести. Мне почему-то кажется, что нельзя вмешиваться в то, что создал Бог. Кто знает, может, и не геном человека уже замахнулись.
В середине прошлого века в СССР доказали как дважды два, что генная инженерия сплошной обман народа. Но он продолжается до наших дней. Как можно говорить о чём-то, когда посмотреть ничего нельзя. Это же на молекулярном уровне. Что, прикажете каждому покупателю в магазин с микроскопом ходить. Такой же развод, как и с нано-технологией. Ничего не видно, но деньги дополнительные берут.
Источник