Способы формирования выборочной совокупности
В статистике применяются различные способы формирования выборочных совокупностей, что обусловливается задачами исследования и зависит от специфики объекта изучения.
Основным условием проведения выборочного обследования является предупреждение возникновения систематических ошибок, возникающих вследствие нарушения принципа равных возможностей попадания в выборку каждой единицы генеральной совокупности. Предупреждение систематических ошибок достигается в результате применения научно обоснованных способов формирования выборочной совокупности.
Существуют следующие способы отбора единиц из генеральной совокупности:
1) индивидуальный отбор — в выборку отбираются отдельные единицы;
2) групповой отбор — в выборку попадают качественно однородные группы или серии изучаемых единиц;
3) комбинированный отбор — это комбинация индивидуального и группового отбора.
Способы отбора определяются правилами формирования выборочной совокупности.
Выборка может быть:
- собственно-случайная состоит в том, что выборочная совокупность образуется в результате случайного (непреднамеренного) отбора отдельных единиц из генеральной совокупности. При этом количество отобранных в выборочную совокупность единиц обычно определяется исходя из принятой доли выборки. Доля выборки есть отношение числа единиц выборочной совокупности n к численности единиц генеральной совокупности N, т.е.
- механическая состоит в том, что отбор единиц в выборочную совокупность производится из генеральной совокупности, разбитой на равные интервалы (группы). При этом размер интервала в генеральной совокупности равен обратной величине доли выборки. Так, при 2%-ной выборке отбирается каждая 50-я единица (1:0,02), при 5%-ной выборке — каждая 20-я единица (1:0,05) и т.д. Таким образом, в соответствии с принятой долей отбора, генеральная совокупность как бы механически разбивается на равновеликие группы. Из каждой группы в выборку отбирается лишь одна единица.
- типическая – при которой генеральная совокупность вначале расчленяется на однородные типические группы. Затем из каждой типической группы собственно-случайной или механической выборкой производится индивидуальный отбор единиц в выборочную совокупность. Важной особенностью типической выборки является то, что она дает более точные результаты по сравнению с другими способами отбора единиц в выборочную совокупность;
- серийная — при которой генеральную совокупность делят на одинаковые по объему группы — серии. В выборочную совокупность отбираются серии. Внутри серий производится сплошное наблюдение единиц, попавших в серию;
- комбинированная — выборка может быть двухступенчатой. При этом генеральная совокупность сначала разбивается на группы. Затем производят отбор групп, а внутри последних осуществляется отбор отдельных единиц.
В статистике различают следующие способы отбора единиц в выборочную совокупность:
- одноступенчатая выборка — каждая отобранная единица сразу же подвергается изучению по заданному признаку (собственно-случайная и серийная выборки);
- многоступенчатая выборка — производят подбор из генеральной совокупности отдельных групп, а из групп выбираются отдельные единицы (типическая выборка с механическим способом отбора единиц в выборочную совокупность).
Источник
Способы формирования выборочной совокупности
Тема 10. Выборочное наблюдение
Понятие о выборочном исследовании
Выборочное наблюдение–несплошное наблюдение, при котором признаки регистрируются у отдельных единиц изучаемой статистической совокупности, отобранных с использованием специальных методов, а полученные в процессе обследования результаты с определенным уровнем вероятности распространяются на всю исходную совокупность.
Выборочное наблюдение нельзя отождествлять с несплошным обследованием вообще, т.к. оно является лишь одним из видов последнего, наиболее проработанным с методологической и организационной точек зрения. Помимо выборочного наблюдения несплошное обследование может осуществляться путем монографического описания, метод основного массива.
При выборочном методе обследованию подвергается сравнительно небольшая часть всей изучаемой совокупности (обычно до 5-10%, реже 15-25%).
Преимущества выборочного метода:
1) существенная экономии различного вида ресурсов: финансовых средств, материально-технических ресурсов, трудовых ресурсов, времени.
2) возможность расширить программу наблюдения, т.е. более детально изучить отдельные единицы совокупности;
3) невозможность в ряде случаев проведения сплошного наблюдения (например, контроль качества многих видов продукции связан с их порчей).
Реализация выборочного метода базируется на понятиях генеральной и выборочной совокупностей. Генеральная совокупность – исходная изучаемая статистическая совокупность, из которой производится отбор части единиц. Выборочная совокупность (выборка) – отобранная из генеральной совокупности некоторая часть единиц, подвергающаяся обследованию.
Способы формирования выборочной совокупности
В статистике применяются различные способы формирования выборочных совокупностей, что обусловливается задачами исследования и зависит от специфики объекта изучения. Основным условием проведения выборочного обследования является предупреждение возникновения систематических (тенденциозных) ошибок, возникающих вследствие нарушения принципа равных возможностей попадания в выборку каждой единицы генеральной совокупности.
Метод отбора – алгоритм извлечения единиц или групп единиц из генеральной совокупности, реализующий принцип случайности отбора и лежащий в основе того или иного способа формирования выборочной совокупности (вида выборки).
Отбор единиц в выборочную совокупность может быть:
При повторном отборе попавшая в выборку единица подвергается обследованию, т.е. регистрации значений ее признаков, возвращается в генеральную совокупность и наравне с другими единицами участвует в дальнейшей процедуре отбора. Таким образом, некоторые единицы могут попадать в выборку дважды, трижды или даже большее число раз. И при изучении выборочной совокупности они будут рассматриваться как отдельные независимые наблюдения. Отметим, что число единиц генеральной совокупности, участвующих в отборе, при таком подходе остается постоянным. Поэтому вероятность попадания в выборку для всех единиц совокупности на протяжении всего процесса отбора также не меняется.
На практике методология повторного отбора обычно использует в тех случаях, когда объем генеральной совокупности не известен и теоретически возможно повторение единиц с уже встречавшимися значениями всех регистрируемых признаков.
При бесповторном отборе попавшая в выборку единица подвергается обследованию и в дальнейшей процедуре отбора не участвует, т.е. не возвращается обратно. Вероятность попадания отдельных единиц в выборку все время изменяется (для оставшихся единиц она возрастает). Такой отбор целесообразен и практически возможен в тех случаях, когда объем генеральной совокупности четко определен. Получаемые при этом результаты, как правило, являются более точными по сравнению с результатами, основанными на повторной выборке.
Практика применения выборочного метода в экономико-статистических исследованиях использует следующие способы отбора единиц из генеральной совокупности:
1) индивидуальный отбор — в выборку отбираются отдельные единицы;
2) групповой отбор — в выборку попадают качественно однородные труппы или серии изучаемых единиц;
3) комбинированный отбор — комбинация индивидуального и группового отбора.
Способы отбора определяются правилами формирования выборочной совокупности. Выборка может быть:
2) механическая (систематическая);
3) типическая (стратифицированная, расслоенная);
4) серийная (гнездовая);
Собственно-случайная выборка состоит в том, что выборочная совокупность образуется в результате случайного (непреднамеренного) отбора отдельных единиц из генеральной совокупности. Единицы отбираются в случайном порядке, не зависящем ни от последовательности расположения единиц в совокупности, ни от значений их признаков. Все без исключения единицы генеральной совокупности имеют абсолютно равные шансы попадания в выборку.
При этом следует установить четкие границы генеральной совокупности. Отбор производится с использованием какого-либо алгоритма, реализующего принцип случайности, например, методом жеребьевки. Объем жребиев (фишек, карточек) должен соответствовать объему генеральной совокупности. Каждый жребий должен содержать информацию об отдельной единице совокупности – номер, название, ФИО, адрес или какой-либо другой отличительный признак. Требуемое в соответствии с установленным процентом отбора число жребиев извлекается из общей совокупности в случайном порядке.
Можно использовать и таблицы случайных чисел. Для этого берется любая строка или колонка таблицы, и в выборку включаются указанные номера единиц генеральной совокупности.
Собственно-случайная выборка может быть осуществлена по схемам повторного и бесповторного отбора.
Механическая (систематическая) выборка может быть применена в тех случаях, когда генеральная совокупность каким-либо образом упорядочена, т.е. имеется определенная последовательность в расположении единиц (табельные номера работников, списки избирателей, телефонные номера респондентов, номера домов и квартир и т.п.).
Для проведения механической выборки устанавливается пропорция отбора, которая определяется соотнесением объемов выборочной и генеральной совокупностей. Так, если из совокупности 500 000 ед. предполагается отобрать 10 000 ед., то пропорция отбора составит 1 /50, т.е. отбирается каждая 50-я единица. Интервал отбора также может быть определен по установленному проценту отбора. Так, при 2%-ной выборке отбирается каждая 50-я единица (1:0,02), при 5%-ной выборке — каждая 20-я единица (1:0,05) и т.д.
Таким образом, в соответствии с принятой долей отбора генеральная совокупность как бы механически разбивается на равновеликие группы. Из каждой такой группы в выборку отбирается лишь одна единица.
Для обеспечения репрезентативности (представительности) выборки все единицы генеральной совокупности должны располагаться в определенном порядке. При этом по отношению к изучаемому показателю единицы генеральной совокупности могут быть упорядочены по существенному, второстепенному или нейтральному признаку. Это важно для установления порядка отбора единиц в выборку. При упорядочении генеральной совокупности по существенному признаку, т.е. по признаку, который всецело определяет поведение изучаемого показателя, в выборочную совокупность должна отбираться та единица, которая находится в середине каждой группы. Это позволяет избежать появления систематической ошибки выборки.
Важной особенностью механической выборки является то, что формирование выборочной совокупности можно осуществить, не прибегая к составлению списков. На практике часто используют тот порядок, в котором фактически размещаются единицы генеральной совокупности. Например, последовательность выхода готовых изделий с конвейера или поточной линии, порядок размещения единиц партии товара при хранении, транспортировке, реализации и т. д.
Типическая (стратифицированная, расслоенная) выборка используется в тех случаях, когда все единицыгенеральной совокупности объединены в несколько крупных типических групп. Такие группы называются также стратами, или слоями. Например, при обследовании населения в качестве типических групп могут быть выбраны области, районы, социальные, возрастные и образовательные группы, при обследовании предприятий – отрасли, формы собственности и т.п.
Отбор единиц в выборочную совокупность из каждой типической группы осуществляется собственно-случайным или механическим способом. Отбор единиц в типическую выборку может быть организован либо пропорционально объему типических групп, либо пропорционально внутригрупповой вариации (дифференциации) признака.
При типической выборке, пропорциональной объему типических групп, число единиц, подлежащих отбору из каждой группы, определяется следующим образом:
,
где N – численность генеральной совокупности;
Ni –объем i-ой группы генеральной совокупности;
n – численность выброки;
ni — объем выборки из i-ой группы:
Логика отбора пропорционально вариации заключается в следующем: если внутри какой-либо типической группы наблюдаемый признак варьирует слабо, то для определения границ генеральных характеристик из данной группы достаточно обследовать относительно небольшое число единиц; при сильной же вариации признака объем выборки из данной группы должен быть соответственно увеличен.
Серийная (гнездовая) выборка используется в тех случаях, когда все единицыгенеральной совокупности объединены в небольшие более или менее равновеликие группы (серии). В качестве таких серий могут выступать упаковки с определенным количеством готовой продукции, партии товара, студенческие группы, бригады и т.п.
При серийной выборке отбираются не отдельные единицы, а целые их группы, серии (гнезда). Группы единиц (серии) отбираются собственно-случайным или механическим способом. Внутри же каждой из попавшей выборку серии обследуются все без исключения единицы, т.е. применяется сплошное наблюдение.
В отдельных случаях серийная выборка имеет не столько методологические, сколько организационные преимущества перед другими способами формирования выборочной совокупности. Например, многие товары хранятся в пачках, коробках, ящиках и т.п. Поэтому при контроле качества поступившего в упаковке товара рациональнее проверить несколько отдельных упаковок, чем из всех упаковок отобрать необходимое количество единиц товара.
Источник
Простыми словами о выборке
Привет. Я UX-исследователь в СКБ Контур. Чаще всего в работе я использую качественные методы исследований — глубинные интервью и модерируемые юзабилити-тестирования. Количественные исследования без подготовленной инфраструктуры со стороны разработки более ресурсозатратные, поэтому самостоятельно их провести сложнее.
Но самое сложное для меня в проведении количественного исследования — это выборка. Мне ближе гуманитарная сторона исследовательской работы, поэтому разобраться в выборке сложнее, чем в техниках ведения интервью. Если у тебя такая же проблема, эта статья будет полезна.
Ниже я попробовала просто рассказать о выборке, репрезентативности и методах отбора при проведении количественного исследования.
Выборка и репрезентативность
Опрос — это количественный метод, направленный на получение точной, объективной и статистически значимой информации. Если качественные методы помогают в формулировке гипотез, то количественные — масштабируют и проверяют эти гипотезы на всей целевой аудитории.
Поэтому важно проводить отбор респондентов таким образом, чтобы выборочная совокупность отражала состав всей генеральной совокупности.
В социологии есть термин — единица наблюдения. Это может быть один человек, группа или сообщество в зависимости от целей исследования.
Генеральная совокупность — это вся совокупность единиц наблюдения, имеющих отношение к теме исследования.
Например, если ты проводишь продуктовое исследование, то скорее всего твоя генеральная совокупность — это все пользователи сервиса или определенный сегмент.
Выборочная совокупность — часть генеральной совокупности, которую вы изучаете в ходе исследования с помощью разработанных вами инструментов (анкета, гайд и прочее).
Например, в ходе исследования было опрошено 400 респондентов среди всех пользователей сервиса. Это твоя выборочная совокупность.
Выборка должна быть репрезентативной, иначе результаты количественного исследования будут сомнительными.
Репрезентативность — обеспечение в выборочной совокупности наличия всех видов единиц генеральной совокупности в достаточном количестве.
Репрезентативность имеет качественное и количественное выражение. Качественная репрезентация обязывает включить в выборку все возможные варианты респондентов, особенно, если какой-то признак влияет на опыт использования сервиса.
Например, выборка не будет репрезентативной если ты опросишь только новых пользователей (если это не оправдано целями исследования). Особенно это исказит результаты исследования, если длительность использования напрямую влияет на проверку гипотезы.
На практике, особенно в онлайн-опросах, качественная репрезентативность может страдать. Ею можно пренебречь, если вы уверены, что на проверку гипотезы не повлияет принадлежность респондента к той или иной группе. Онлайн-опросы предполагают стихийную выборку и поэтому предусмотреть присутствие всех типов респондентов сложно. Про стихийную выборку подробнее я расскажу ниже.
Чтобы соблюсти количественную репрезентацию нужно обеспечить достаточное число респондентов, в том числе по каждой группе внутри выборки.
Например, если ты пригласишь на опрос 80% новых пользователей и лишь 20% пользователей с опытом — это тоже исказит результаты (опять же если это не предусмотрено дизайном исследования).
И, конечно, для того, чтобы масштабировать результаты опроса на всю генеральную совокупность (в нашем примере — на всех пользователей), нужно в целом рассчитать количество человек, которое ты планируешь пригласить для прохождения опроса.
Что значит «достаточное» количество человек для выборки.
К примеру, если проводить исследование на выборке в 50–100 человек, то погрешность в репрезентативности полученной информации будет выше, чем при опросе 800–1000 человек.
Но увеличивать до бесконечности число опрашиваемых нет смысла. После определенного количества респондентов ошибка выборки остановится на одном уровне.
Ошибка выборки — разность между характеристиками выборочной и генеральной совокупности. Это отклонение средних характеристик выборочной совокупности от средних характеристик генеральной совокупности.
Где-то после 400 респондентов ошибка выборки не меняется. Поэтому обычно в опросах выборочная совокупность составляет 300–400 человек. При таком значении ты можешь уверенно переносить результаты исследования на всю аудиторию при соблюдении качественной репрезентации и корректно составленной анкеты.
Если генеральная совокупность небольшая, то и выборочная совокупность будет меньше стандартных 300–400 респондентов.
Если хочешь разобраться с формулой расчета выборки подробнее про нее можно узнать здесь.
Также ты можешь провести сплошной опрос. При сплошном опросе ты опрашиваешь всю генеральную совокупность.
Например, если есть интересный и немногочисленный сегмент пользователей (30–100 человек), ты можешь опросить их всех. Или это стартап и уже есть первые пользователи. В таком случае тоже можно провести опрос по всей генеральной совокупности.
На практике требованиями количественной репрезентации иногда пренебрегают в силу нехватки ресурсов на обзвон (если это телефонный опрос) или времени на сбор ответов. Или если опрос проводят для сбора гипотез, а не для принятия конечного решения.
Здесь важно понимать, какое решение должно быть принято на основе исследования. Если это важный продуктовый или бизнес-вопрос, то лучше потратить время и деньги на проверку гипотезы с репрезентативной выборкой, чтобы не получить неверные выводы. А если, это, к примеру, опрос для сбора отклика по новой фиче, то можно остановиться на 30–60 респондентах. Основные выводы ты сделаешь, а пользователи по мере работы в сервисе расскажут о том, что ты мог пропустить.
Методы отбора
В количественном исследовании по сравнению с качественным не важно кто перед тобой, потому что все выводы строятся по совокупности ответов респондентов и материал собирается в обезличенном виде. Поэтому в идеале в выборку респонденты должны попадать случайным образом, чтобы сделать результаты максимально свободными от искажений.
Чтобы этого достичь можно использовать один из методов формирования выборки.
Случайные выборки
Они предполагают, что в выборке каждый элемент генеральной совокупности имеет заранее заданную вероятность быть отобранным в исследование.
Простая случайная выборка. Сначала нужно присвоить каждому потенциальному респонденту идентификационный номер. Дальше с помощью генератора случайных чисел определить номера, которые будут включены в выборку для опроса.
Механическая выборка. Как и в простой выборке пользователям присваивается порядковый номер. Только отбор происходит не с помощью генератора случайных чисел, а с шагом равным n. Например, каждый сотый.
Стратифицированная выборка. Для такой выборки нужно поделить генеральную совокупность на сегменты или страты. После чего респонденты внутри каждой группы отбираются случайным образом. Из каждого сегмента выделяют пользователей пропорционально их доле в генеральной совокупности.
Кластерный отбор или гнездовая выборка. Группа потенциальных респондентов отбирается случайным образом из всей генеральной совокупности. Далее внутри этой группы опрашиваются все пользователи. Например, можно опросить всех пользователей, которые зарегистрировались в сервисе в прошлом квартале.
При таком отборе риск искажений выше и важно учитывать внешние и внутренние факторы. Может быть в прошлом квартале в жизни пользователей произошло что-то важное, что повлияло на их желание воспользоваться сервисом. Тогда эта группа будет сильно отличаться от генеральной совокупности.
Неслучайные выборки
Обычно такие методы отбора применяют, если нет возможности или ресурсов для формирования случайной выборки. Например, у тебя мало времени на опрос или нет данных о генеральной совокупности или респонденты труднодоступны.
Квотная выборка. Такой метод можно применять, если у вас есть знания о составе генеральной совокупности. Например, вы знаете, как ваши пользователи распределяются в разрезе по должности, отрасли компании, возрасту и так далее. Тогда можно пропорционально этим долям сформировать выборку: в каждом разрезе выбрать такое число респондентов, которое будет отображать статистику по всей аудитории.
Стихийная выборка. Это метод без особых правил. В опрос попадают все, кто захочет пройти опрос. Такая выборка типична для онлайн-опросов, размещенных в свободном доступе.
«Снежный ком». Тоже достаточно популярная и простая методика. Каждого респондента просят порекомендовать нового среди его друзей, коллег и знакомых, которые подходили бы под параметры исследования. Такая выборка часто применяется когда самостоятельно найти интересующих респондентов затруднительно. Например, пользователи, занимающие высокую должность или с высоким доходом.
«Типичный представитель». Из генеральной совокупности отбираются респонденты с типичными признаками целевой аудитории. Только определить, что взять за такой признак, обычно сложно.
Отдельно стоит сказать про многоступенчатые выборки. На практике чаще всего (иногда интуитивно) исследователи используют как раз многоступенчатый метод. Такой отбор предполагает наличие двух или более этапов формирования выборки. Проще говоря, это микс нескольких методов отбора.
Например, ты собрал статистику по своей аудитории и знаешь, что большинство пользователей находятся в Москве. Это будет первая ступень отбора по «типичному представителю». Далее среди пользователей-москвичей ты приглашаешь на опрос каждого сотого (механическая выборка).
Проводя количественное исследование, не забывай о репрезентативности и продумывай подходящий метод отбора респондентов. Хорошая подготовка — половина успеха.
Источник