Способы экранирования электромагнитного поля

Экранирование электромагнитных полей

Для предотвращения утечки информации по радиоэлектрон­ным техническим каналам утечки информации, вызванных ПЭМИН и радиозакладными устройствами, на опасных направле­ниях применяют электромагнитные экраны. Физические процессы при экранировании отличаются в зависимости от вида поля и час­тоты его изменения.

Различают электрические экраны для экранирования элект­рического поля, магнитные для экранирования магнитного поля и электромагнитные — для экранирования электромагнитного поля. Способность экрана ослаблять энергию полей оценивает­ся эффективностью экранирования (коэффициентом ослабле­ния). Если напряженность поля до экрана равна Е0 и Н0, а за экра­ном — Еэ и Нэ, то Se = EQ / еэ и sh = Н0 / Нэ. На практике эффектив­ность экранирования измеряется в децибелах (дБ) и неперах (Нп): sc(h) = 201g[E0(H0) / Ез(Н$ [дБ] или Se(H) = ln[E0(H0) / Еэ(Н )] [Нп].

Аналитические зависимости эффективности экранирования определены для идеализированных (гипотетических) моделей эк­ранов в виде бесконечно плоской однородной токопроводящей по­верхности, однородной сферической токопроводящей поверхности и однородной бесконечно протяженной цилиндрической токопро­водящей поверхности. Для других вариантов эффективность экра­нирования определяется с погрешностью, зависящей от степени их подобия гипотетическим.

1. При экранировании электрического поля электроны экрана под действием внешнего электрического поля перераспределяют­ся таким образом, что на поверхности экрана, обращенной к источ­нику поля, сосредоточиваются заряды, противоположные по знаку зарядам источника, а на внешней (другой) поверхности экрана кон­центрируются одинаковые с зарядами источника поля (рис. 12.1).

Положительные заряды на рис. 12.1 создают вторичное элек­трическое поле, близкое по напряженности к первичному. С це­лью исключения вторичного поля, создаваемого зарядами на вне­шней поверхности экрана, экран заземляется и его заряды компенсируются зарядами земли. Экран приобретает потенциал, близкий потенциалу земли, а электрическое поле за экраном существенно уменьшается. Полностью устранить поле за экраном не удается из-за неполной компенсации зарядов на его внешней стороне вследс­твие ненулевых значений сопротивления в экране и цепях заземле­ния, а также из-за распространения силовых линий вне границ эк­рана.

Рис. 12.1. Экранирование электрического поля

Эффективность экранирования зависит от электропроводнос­ти экрана и сопротивления заземления. Чем выше проводимость экрана и цепей заземления, тем выше эффективность электричес­кого экранирования. Толщина экрана и его магнитные свойства на эффективность экранирования практически не влияют.

2. Экранирование магнитного поля достигается в результате действия двух физических явлений:

• «втягивания» (шунтирования) магнитных силовых линий поля в экран из ферромагнитных материалов (с jj,» 1), обусловлен­ного существенно меньшим магнитным сопротивлением мате­риала экрана, чем окружающего воздуха;

* возникновением под действием переменного экранируемо­го поля в токопроводящей среде экрана индукционных вихре­вых токов, создающих вторичное магнитное поле, силовые ли­нии которого противоположны магнитным силовым первичного поля.

Магнитное сопротивление пропорционально длине магнитных силовых линий и обратно пропорционально площади поперечного сечения рассматриваемого участка и величине магнитной проницаемости среды (материала), в которой распространяются магнит­ные силовые линии. При втягивании магнитных силовых линий в экран уменьшается их напряженность за экраном. В результате этого повышается коэффициент экранирования.

При воздействии на экран переменного магнитного поля в ма­териале экрана возникают также ЭДС, создающие в материале эк­рана вихревые токи в виде множества замкнутых колец. Кольцевые вихревые токи создают вторичные магнитные поля, которые вы­тесняют основное и препятствует его проникновению вглубь ме­талла экрана. Экранирующий эффект вихревых токов тем выше, чем выше частота поля и больше сила вихревых токов.

Коэффициент экранирования магнитной составляющей поля представляет собой сумму коэффициентов экранирования, обус­ловленного рассмотренными физическими явлениями. Но доля слагаемых зависит от частоты колебаний поля. При f = 0 экрани­рование обеспечивается только за счет шунтирования магнитно­го поля средой экрана. Но с повышением частоты поля все сильнее проявляется влияние на эффективность экранирования вторично­го поля, обусловленного вихревыми токами в поверхности экрана. Чем выше частота, тем больше влияние на эффективность экрани­рования вихревых токов.

В силу разного влияния рассмотренных физических явлений магнитного экранирования отличаются требования к экранам на низких и высоких частотах. На низких частотах (приблизительно до единиц кГц), когда преобладает влияние первого явления, эф­фективность экранирования зависит в основном от магнитной про­ницаемости материала экрана и его толщины. Чем больше значе­ния этих характеристик, тем выше эффективность магнитного эк­ранирования. Для экрана, например, в виде куба эффективность магнитного экрана можно оценить по формуле:

где d — толщина стенок экрана; D — размер стороны экрана куби­ческой формы.

Эффективность экранирования за счет вихревых токов зави­сит от их силы, на величину которой влияет электрическая проводимость экрана. В свою очередь это сопротивление прямо про­порционально электрическому сопротивлению материала экрана и обратно пропорционально его толщине. Однако по мере повыше­ния частоты поля толщина материала экрана, в которой протека­ют вихревые токи уменьшаются из-за так называемого поверхнос­тного или скин-эффекта. Сущность его обусловлена тем, что вне­шнее (первичное) магнитное поле ослабевает по мере углубления в материал экрана, так как ему противостоит возрастающее вторич­ное магнитное поле вихревых токов. Напряженность переменно­го магнитного поля уменьшается по мере проникновения его в ме­талл экрана на глубину х от его поверхности по экспоненциально­му закону:

где о — эквивалентная глубина проникновения, соответствующая ослаблению напряженности магнитного поля в 2,72 раза и вычис­ляемая по формуле:

где р — удельное электрическое сопротивление материала экрана в Ом • мм 2 /м; f— частота магнитного поля в Гц; ц — относительная магнитная проницаемость материала экрана.

Уменьшение эквивалентной глубины проникновения при уве­личении ц обусловлено тем, что ферромагнитные материалы «втя­гивают» силовые магнитные линии первичного поля, в результа­те чего повышаются концентрация магнитных силовых линий и, следовательно, напряженность магнитного поля внутри материа­ла экрана. В результате этого повышаются уровни индуцируемых в нем зарядов, следствием чего является увеличение значений вих­ревых токов и напряженности вторичного магнитного поля. Таким образом, глубина проникновения тем меньше, чем выше частота поля, удельная магнитная проницаемость и электрическая прово­димость металла экрана.

На высоких частотах эффективность магнитного экранирова­ния в дБ экраном толщиной d в мм можно определить, подставив в Sn= 20 Ig (Hx / H0)выражение для Нх. В результате такой подстанов­ки и преобразования легко получить, что

Однако это выражение может использоваться для приближен­ной оценки эффективности экранирования при условии, что значе­ние d соизмеримо с а. Если d » а, то изтза поверхностного эффекта увеличение d слабо влияет на эффективность экранирования, так как вторичное магнитное поле создают вихревые токи в поверх­ностном слое экрана.

Следовательно, для обеспечения эффективного магнитного экранирования на высоких частотах следует для экранов исполь­зовать материалы с наибольшим отношением ц / р, учитывая при этом, что с повышением f сопротивление из-за поверхностного эф­фекта возрастает в экспоненциальной зависимости. На высоких частотах глубина проникновения может быть столь малой, а со­противление столь велико, что применение материалов с высокой магнитной проницательностью, например пермаллоя, становит­ся нецелесообразным. Для f > 10 МГц значительный экранирую­щий эффект обеспечивает медный экран толщиной всего 0,1 мм. Для экранирования магнитных полей высокочастотных контуров усилителей промежуточной частоты бытовых радио- и телевизи­онных приемников широко применяют алюминиевые экраны, ко­торые незначительно уступают меди по удельному электрическому сопротивлению, но существенно их легче. Для высоких частот тол­щина экрана определяется в основном требованиями к прочности конструкции.

Кроме того, на эффективность магнитных экранов влияет кон­струкция самого экрана. Она не должна содержать участков с от­верстиями, прорезями, швов на пути магнитных силовых линий и вихревых токов, создающих им дополнительное сопротивление.

Так как магнитное экранирование обеспечивается за счет то­ков, а не зарядов, магнитные экраны не нуждаются в заземлении.

3. Физические процессы при электромагнитном экранирова­нии рассматриваются на модели, представленной на рис. 12.2.

Рис. 12.2. Электромагнитное экранирование

Электромагнитное экранирование обеспечивается за счет от­ражения части от экрана и поглощения части, проникшей в экран электромагнитного поля. Следовательно, эффективность экрани­рования 8э = 8%отр + 8эпогл, где 8эотр= Ј S — эффективность

Читайте также:  Способы правовой защиты конституции

экранирования за счет отражения электромагнитной волны от по­верхности экрана; 8э погл = ^ 8э погл. —эффективность экраниро-

вания за счет поглощения электромагнитной волны в экране.

Эффективность экранирования в дБ за счет отражения элект­ромагнитного поля рассчитывается по формуле:

Величина эффеншнншли экранирования в дБ за счет поглоще­ния в экране толщиной d мм оценивается по формуле:

Последнее выражение совпадает с приблизительной форму­лой, определяющей эффективность магнитного экранирования за счет вторичного поля. Это подтверждает утверждение, что погло­щение электромагнитного поля обусловлено, прежде всего, поте­рями энергии вихревых токов в материале экрана. Как следует из приведенных формул, в зависимости от часто­ты, показателей магнитных и электрических свойств материала эк­рана влияние отражения и поглощения на разных частотах сущест­венно отличается. На низких частотах наибольший вклад в эффек­тивность экранирования вносит отражение от экрана электромаг­нитной волны, на высоких — ее поглощение в экране. Доля этих составляющих в суммарной величине эффективности электромаг­нитного экранирования одинаковая для немагнитных (ц,

1) экра­нов на частотах в сотни кГц (для меди — 500 кГц), для магнитных (ц » 1) — на частотах в доли и единицы кГц, например для пер­маллоя — 200 Гц. Магнитные материалы обеспечивают лучшее экранирование электромагнитной волны за счет поглощения, а не­магнитные, но с малым значением удельного сопротивления — за счет отражения.

Кроме того, учитывая, что электромагнитная волна содер­жит электрическую и магнитную составляющие, то при электро­магнитном экранировании проявляются явления, характерные для электрического и магнитного экранирования.

Следовательно, на низких частотах материал для экрана дол­жен быть толстым, иметь высокие значения магнитной проница­емости и электропроводности. На высоких частотах экран должен иметь малые значения электрического сопротивления, а требова­ния к его толщине и магнитной проницаемости материала сущест­венно снижаются. Для обеспечения экранирования электрической составляющей электромагнитный экран .надо заземлять.

Источник

Заземление и экранирование как способы обеспечения электромагнитной совместимости электронных устройств

Самый простой способ добиться электромагнитной совместимости электронного устройства (ЭМС) — принять ее требования в расчет при проектировании. Последующие меры по обеспечению ЭМС будут, в общем, значительно обширнее. Они часто слишком дороги из-за недостатка места и требуют дополнительных расходов. Это также относится к модернизации и техническому обслуживанию имеющегося оборудования. И только соблюдение требований ЭМС на этапе проектирования обеспечивает достаточную помехоустойчивость системы и минимальную помехоэмиссию, что делает ее экономически выгодной. Одним из важнейших методов обеспечения электромагнитной совместимости (ЭМС) является правильный монтаж, кроме этого, важно с учетом ЭМС обеспечить цепями заземления проектируемое устройство, чтобы создать необходимые контуры сброса паразитной энергии помех.

Системы заземления

В соответствии с нормативными документами различают два вида заземления: защитное, выполняемое в целях электробезопасности, и функциональное, реализуемое для обеспечения работоспособности электроустановки (не в целях электробезопасности). В связи с этим все цепи заземления можно разбить на несколько групп. Они показаны в таблице.

Таблица. Обозначения и названия цепей заземления

Обозначение

Название

Цепи

Сигнальная «земля», или схемная «земля»

Цепи возврата сигнальных токов

Цепи возврата постоянных токов

Цепи возврата переменных силовых токов
и экранирующие корпуса

При разработке системы лучше всего изолировать друг от друга цепи возврата сигнальных токов, цепи возврата постоянных токов питания и цепи возврата переменных токов питания и построить систему заземления из трех независимых контуров, сходящихся в одной точке. Такой подход позволяет оптимизировать каждую заземляющую цепь в отдельности. Например, цепи заземления схем распространения сигналов должны иметь низкий импеданс в диапазоне частот до нескольких мегагерц и выше (в зависимости от спектра сигналов), и по ним, как правило, течет малый ток. Заземляющая цепь источников питания постоянного тока должна быть рассчитана на низкий импеданс, но значительно более высокий ток. А заземления источников питания по сети переменного тока (корпусная «земля») должны иметь низкий импеданс вблизи частоты 100 Гц и выдерживать токи в сотни ампер.

В очень редких случаях различные контуры заземления могут не соединяться. Такие схемы с плавающим заземлением применяются для чрезвычайно чувствительных устройств. Они требуют хорошей изоляции схемы от корпуса (высокого сопротивления и низкой емкости), иначе оказываются малоэффективны. Причем в качестве источников питания таких систем должны использоваться гальванически развязанные источники питания или солнечные элементы и батареи, а сигналы должны поступать и покидать схему через трансформаторы или оптроны.

Иногда точки сигнального и корпусного заземления соединяют высокоомным резистором, по которому стекают статические заряды.

Заземление по цепям питания

Широко используемые системы заземления предназначены для выполнения разно­образных задач. Они могут функционировать отдельно или вместе и обеспечивать одну или несколько функций:

  • защиту людей от поражения электрическим током;
  • защиту оборудования от повреждения электрическим током;
  • обеспечивать нулевую точку отсчета потенциала для слаботочных сигналов;
  • поддерживать требуемый уровень электромагнитной совместимости.

Правильно выполненное заземление по цепям питания играет особую роль в бесперебойном функционировании установки. Очень важно, чтобы компоненты установки как в низкочастотном, так и в высокочастотном диапазоне имели единое заземление. Поэтому еще при проектировании установки следует учитывать высокочастотный характер заземления. Все компоненты установки должны быть заземлены с низким электрическим сопротивлением — как для низких частот (НЧ), так и для высоких частот (ВЧ).

Система заземления обычно проектируется и устанавливается для обеспечения в этой цепи низкого сопротивления, способного отводить как токи короткого замыкания при срабатывании систем защиты, так и высоко­частотные токи помех от электронных устройств и систем. Правильно выполненная система заземления и уравнивания потенциалов значительно улучшает электромагнитную обстановку помещения и электромагнитную совместимость оборудования, тем самым обеспечивая:

  • улучшенную электромагнитную совместимость вычислительных и иных систем;
  • соответствие требованиям электромагнитной совместимости (по излучению помех и устойчивости к ним);
  • возможность надежной и безотказной работы различного электронного электрооборудования.

Существуют различные системы заземления, но для всех из них требуется соблюдение специальных условий, однако эти условия не всегда соблюдаются в стандартных промышленных и бытовых электросистемах, особенно когда идет речь о высокочастотном заземлении.

Использование отдельной «чистой» системы заземления для электронного оборудования и «грязной» системы заземления для силового оборудования не рекомендуется с точки зрения обеспечения требуемой электромагнитной совместимости, так как при разряде молнии в электросистеме возникнут высокочастотные возмущения, токи короткого замыкания и переходные токи между этими «землями». Возникшие в результате переходные напряжения могут привести к повреждению или выходу из строя электронного оборудования.

В типовой электросистеме для много­этажного здания каждый этаж должен иметь собственную сеть заземления (обычно в виде сетки), и все сетки должны быть соединены между собой и присоединены к заземлению.

Для обеспечения защиты от обрыва одного из проводников (чтобы ни одна из секций сети заземления не оказалась отсоединенной) требуются не менее двух соединений с этой сеткой (избыточное резервирование).

На практике для получения более равномерного распределения токов используется более двух соединений. Это сглаживает различия в потенциалах и общем сопротивлении между различными этажами здания и другими контурами заземления. Каждое помещение в здании должно иметь проводники системы заземления для эквипотенциального соединения устройств, систем, кабелепроводов и конструкций. Эту систему можно усилить с помощью металлических труб, лотков, опор, подставок и др. В специальных случаях, например в аппаратных серверных или в компьютерных помещениях, для выравнивания потенциалов при соединении устройств коммуникационными кабелями можно усилить существующую сеть заземления дополнительными заземляющими проводниками или шинами и создать специальную зону.

Параллельные контуры заземляющего тока, как правило, имеют разные резонансные частоты. Если один из контуров отличается большим сопротивлением, он наверняка шунтируется другим контуром, имеющим другую резонансную частоту. В целом, в широком спектре частот (от десятков герц до мегагерц) наличие большого количества параллельных контуров с различными частотными параметрами статистически приводит к системе с низким полным сопротивлением.

  • Есть и различные технические способы, чтобы обеспечить низкоомную цепь заземления, такие как:
  • соединение с широким поверхностным контактом, которое с двух концов имеет достаточный поверхностный контакт с общим выводом;
  • создание соединений из большого количества отдельных, изолированных друг от друга, проводников (заземляющий литцентрат);
  • применение экранированного провода, так как экран является для НЧ и ВЧ очень низкоомным соединением.
Читайте также:  Способы приготовления яблочного сока

Все указанные варианты имеют низкую индуктивность и, следовательно, обладают малым высокочастотным сопротивлением, что способствует обеспечению ЭМС.

Конструкция

При конструировании очень важным мероприятием становится функциональная разбивка прибора на узлы и блоки с учетом требований ЭМС.

Влияние помех на соединительные провода различных групп может быть сильно снижено при хорошо спланированной трассировке этих проводников. Причем во многих случаях возможна эксплуатация и с неэкранированными проводами. При скручивании информационных проводов также может быть сильно снижено воздействие помех. Скручивание становится тем эффективнее, чем больше витков приходится на единицу длины провода (приблизительно 75 витков на один 1 п. м). При малом воздействии помех расстояние между проводами должно быть тем больше, чем дольше провода идут параллельно. Пересечение между собой токонесущих проводников должно осуществляться под прямым углом между ними.

Хорошим местом для установки фильтра по цепи питания является место непосредственно в приборе. В этом случае может представлять проблемы лишь линия между фильтром и местом ввода кабеля в корпус, так как теперь только на этот участок линии могут воздействовать помехи.

Рис. 1. Заземление фильтра

Поскольку почти во всех фильтрах используются конденсаторы утечки заряда на «землю» C, то эффективность фильтра существенно зависит от качества заземления фильтра. Плохое заземление можно представить с помощью сопротивления R и индуктивности L (рис. 1). Эти элементы препятствуют закорачиванию напряжения помехи на конденсаторах утечки при высоких частотах. Так как фильтр закорачивает напряжение помехи, чтобы направить ток помехи на ее источник, то полное сопротивление соединения между фильтром и источником помехи должно быть как можно меньше. Причем правильный выбор структуры и параметров фильтра возможен только после проведения специализированных расчетов, исследований и измерений.

Типы электромагнитных помех

Рассмотрим отдельно четыре основных типа помех, от которых можно избавиться с помощью правильно выполненного заземления:

  • кондуктивные;
  • индуктивные;
  • емкостные;
  • электростатические.

Кондуктивные помехи распространяются при наличии непосредственного электрического контакта между электрическими цепями и делятся на два вида (рис. 2):

  1. Помехи типа провод-«земля», напряжение которых приложено между каждым из проводников и «землей», которые еще называются несимметричными, или синфазными.
  2. Помехи типа провод-провод, напряжение которых приложено между отдельными электрическими цепями или между элементами одной и той же электрической цепи, которые еще называются симметричными, противофазными или дифференциальными.

Рис. 2. Виды кондуктивных помех

В отличие от дифференциальных синфазные помехи в процессе работы не приводят к сбоям электронного оборудования. Однако могут полностью вывести из строя такое оборудование из-за электрического пробоя внутренней изоляции (или p-n-переходов) в микросхемах и микропроцессорах в случае воздействия помех высокой энергии. С другой стороны, если электронное оборудование полностью изолировано от «земли», то импульсные помехи и перенапряжения относительно «земли» (синфазные несимметричные помехи общего вида) никак не могут повлиять на это оборудование, подобно тому как высокое напряжение относительно «земли» не мешает птицам спокойно сидеть на высоковольтных проводах. Дифференциальные же помехи вообще не имеют отношения к наличию или отсутствию заземления, их можно рассматривать как пульсации по цепям питания.

Что касается индуктивных помех, распространяющихся посредством электромагнитных полей, то, как известно, эффективная защита от помех данного типа осуществляется размещением чувствительной электронной аппаратуры внутри замкнутых металлических оболочек (клетка Фарадея), роль которых призваны выполнять корпуса электронных приборов или экраны. Как известно, заземление клетки Фарадея никак не влияет на эффективность ослабления ею индуктивных помех.

С емкостными помехами дело обстоит несколько сложнее, поскольку помехи этого типа распространяются через емкостные связи между находящимися рядом проводами, между близко расположенными металлическими корпусами, а также между перечисленными элементами и «землей». Заземление экранов проводов и металлических корпусов (впрочем, так же, как и снижение емкости) позволяет устранить емкостные помехи синфазного типа и практически не влияет на емкостные помехи дифференциального типа.

Статические помехи могут появляться в результате накопления статического заряда на изолированном от «земли» корпусе и возникающих в результате этого периодических пробоев на «землю». Заземление корпуса позволяет предотвратить накопление статического заряда. Однако для устранения электростатических (и даже частично емкостных) помех синфазного типа вовсе не требуется наличие низкоомного заземления, достаточно соединить корпус с системой заземления высокоомным резистором. Иногда, для чувствительной электроники используют отдельный контур заземления, соединенный в одной точке с общим контуром заземления (Signal Reference Subsystem), что принципиально не меняет сущности заземления. При этом предполагается, что многочисленные электронные устройства, имеющие электрические и информационные связи между собой, будут обладать общим нулевым (опорным) потенциалом, предотвращающим сбои в работе высокочувствительной электроники из-за электромагнитных помех, создающих дополнительную разность потенциалов между цепями нулевого потенциала, если их не заземлить.

Обеспечение опорного потенциала помогает защитить оборудование и персонал от мощных высокочастотных воздействий. Это общепринятый подход и общая практика обеспечения ЭМС электронной аппаратуры. Считается, что если между всеми электронными устройствами будет сохраняться общий потенциал системы заземления, то есть не будет возникать разность потенциалов между цепями нулевого потенциала различных устройств, то повышение общего потенциала и отличие его от нуля, происходящее одновременно во всех устройствах, не способно вызвать нарушения в работе этих устройств.

Ближняя и дальняя зоны эмиссии помех

В решении задач ЭМС и экранирования в частности важно правильно определить характер поля источника излучения помех.

На практике при характеристике электромагнитной обстановки при работе разно­образной электронной аппаратуры используют термины «электрическое поле», «магнитное поле», «электромагнитное поле». Кратко поясним, что это означает и какая связь существует между ними.

Электрическое поле создается зарядами. Например, во всем известных школьных опытах по электризации эбонита присутствует как раз электрическое поле. Для характеристики величины электрического поля используется понятие «напряженность электрического поля», имеющая обозначение Е. Электрическое поле Е создается между двумя проводниками с различными потенциалами. Оно измеряется в вольтах на метр и пропорционально подаваемому напряжению, деленному на расстояние между проводниками.

Магнитное поле Н образуется вокруг провод­ника, по которому протекает электрический ток. Оно измеряется в амперах на метр и пропорционально току, деленному на расстояние до проводника (рис. 3).

Рис. 3. Магнитное поле

Физические причины существования электромагнитного поля связаны с тем, что изменяющееся во времени электрическое поле порождает магнитное поле, а изменяющееся магнитное поле порождает вихревое электрическое поле. При этом оба компонента, Е и Н, непрерывно изменяясь во времени, воздействуют друг на друга и создают электромагнитные волны (рис. 4).

Рис. 4. Электромагнитные поля:
а) электрическое поле;
б) магнитное поле;
в) электромагнитная волна

Электромагнитные волны характеризуются длиной волны (l), единица измерения — метр. Источник энергии, генерирующий излучение, а по сути создающий электромагнитные колебания, характеризуется частотой (f), единица измерения — герц, а соответственно и электромагнитное поле (ЭМП) этой же частоты.

Важное свойство электромагнитного поля — его разделение на так называемую ближнюю и дальнюю зоны. В ближней зоне, или зоне индукции, на расстоянии от источника излучения меньше длины волны r 3l. В дальней зоне интенсивность поля убывает обратно пропорционально расстоянию до источника помех.

Характеристики поля определяются параметрами источника, величиной Z = E/H и окружающей средой, а также расстоянием от источника до точки наблюдения. Вблизи источника свойства электромагнитного поля обусловлены в основном характеристиками источника, а вдали зависят главным образом от среды, в которой оно распространяется (воздух, вакуум или материал).

Если в источнике протекает значительный ток при малом напряжении, то в ближней зоне преобладает магнитное (низкоомное) поле. Если же в источнике протекает малый ток при относительно большом напряжении, то в ближней зоне преобладает электрическое (высокоомное) поле. Поле в дальней зоне от любого источника называют электромагнитным, или плоской волной; для него Z = 120p 377 Ом (рис. 5).

Читайте также:  Аппарат для маникюра способ применения

Рис. 5. Волновое сопротивление электрического и магнитного полей

Таким образом, определение зоны и характера источника поля позволяет принимать более эффективные меры для уменьшения помех. Например, учитывая, что электрическое поле ближней зоны влияет на рецептор через паразитную емкостную связь с источником, а магнитное поле — через паразитную индуктивную связь, на основании этих данных выбирают соответствующий этому полю экран.

В ближней зоне узлов и элементов радио­электронной аппаратуры, с большими напряжениями и малыми токами генерируются электромагнитные поля с преобладанием электрической составляющей. При этом помехи создаются электрической индукцией, приближенно определяемой эквивалентной емкостью связи. Для ослабления этой связи можно:

  1. Максимально разносить цепи рецептора и источника помех.
  2. Компоновать цепи источника и рецептора помех, минимизируя емкость связи, например располагая помехонесущие и помеховосприимчивые провода под углом, близким к 90°.
  3. Уменьшать размеры цепей источника и рецептора помех.
  4. Применять дифференциальное включение рецептора помех, что практически позволяет значительно ослабить влияние емкостных синфазных помех.
  5. Применять компенсацию помех путем включения дополнительного источника противофазного сигнала помехи.
  6. Если возможность применения указанных мер при проектировании аппаратуры ограничена, то для обеспечения требуемого ослабления помех необходимо прибегнуть к экранированию электрического поля. Конструкции, реализующие это ослабление, называют экранами.

Экранирование электрического поля основано на замыкании силовых линий помехонесущего электрического поля на металлический экран, соединенный с корпусом аппаратуры или землей. Экранирующий эффект заземленного металлического экрана заключается в замыкании большей части емкости связи между экранируемыми элементами конструкции на корпус прибора.

Устранение емкостной связи

Для уменьшения электрической связи между цепями применяется электростатическое экранирование.

Например, между двумя проводниками образуется паразитная емкость, вследствие чего через сопротивление Z2 проходит переменный ток, создаваемый переменным напряжением U. Это событие нарушает режим работы цепи, в которую включено сопротивление Z2, и поэтому нежелательно. Для устранения паразитной емкости между проводниками помещается заземленная пластина Э, называемая электростатическим экраном (рис. 6).

Рис. 6. Защита цепи резистора Z2 электростатическим экраном

Экран шунтирует часть тока источника переменного тока, тем самым снижается нежелательный ток сопротивления Z2. Таким образом, возникает емкостная связь между проводником цепи Z1 и экраном Э. Благодаря этому ток в цепи сопротивления Z2 устраняется.

Каждая катушка индуктивности, кроме индуктивности, обладает и некоторой емкостью. Под влиянием этой емкости возле катушки создается электрическое поле, которое может вызвать паразитные связи. Для того чтобы экранировать не только магнитное, но и электрическое поле катушки, экран делают закрытым со всех сторон и заземляют (соединяют с корпусом установки).

В катушках трансформаторов, кроме желаемой индуктивной связи между обмотками, как правило, возникает нежелательная емкостная связь, то есть между обмотками образуется паразитная емкость. Для сокращения этого явления между катушками помещают электростатический экран (рис. 7), который в данном случае не имеет замкнутых цепей для электрического тока и не оказывает воздействия на магнитные поля катушек.

Рис. 7. Устранение емкостной связи между катушками

Для снижения такой паразитной емкости (емкостной связи) еще используют увеличенное расстояние между обмотками, решая при этом дополнительную задачу обеспечения предельно допустимого напряжения между обеими обмотками. При использовании указанных методов следует не забывать о снижении коэффициента связи между данными обмотками.

Экранирование электромагнитных полей в устройствах промышленной и силовой электроники

Экранирование служит основным средством ослабления электромагнитных помех, вызванных излучением. Экраны применяются для отдельных элементов, узлов, блоков и устройств, которые могут быть либо источниками, либо рецепторами помех. Как правило, экранирование удорожает изделие, поэтому необходимость экранирования должна быть обоснована и рассматриваться только после того, как полностью исчерпаны схемотехнические решения и методы оптимальной компоновки аппаратуры.

Основным назначением электромагнитных экранов является локализация поля помех, создаваемых источником питания, в местах их возникновения с целью ослабления влияния помех на элементы источника питания, чувствительные к помехам. Эффективность экранирования, электрической и магнитной составляющих поля определяется отношением напряженности поля в любой точке пространства, в отсутствие экрана и при его наличии. В общем случае экран не только локализует, но и искажает поле источника в защищаемой области пространства, а также оказывает побочное влияние на параметры паразитной индуктивности и другие паразитные параметры цепей электропитания, находящиеся в зоне действия экрана. Экран устанавливается между источником и приемником помех и снижает напряженности воздействующих полей от Е0 и Н0 до сниженных значений Е1, Н1 за экраном.

Для представления вопросов экранирования рассматривается связь между двумя схемами в виде сосредоточенных емкости и индуктивности между проводниками, поэтому такую схему можно анализировать при помощи обычной теории цепей. При этом надо помнить ряд постулатов:

  • Первое — экраны в преобразовательных устройствах выполняются из немагнитных материалов, а на экранируемых частотах их толщина намного меньше глубины скин-слоя этих частот.
  • Второе — приемник помех не настолько сильно связан с источником, чтобы служить для него нагрузкой.
  • Третье — индуктивные токи в схемах приемников сигналов малы и не искажают первоначальное поле.

Экраны служат для ослабления электрических, магнитных и электромагнитных полей, а именно для того, чтобы исключить проникновение и воздействие таких полей на элементы, блоки, приборы, кабели, помещения и здания. Также для того, чтобы подавить исходящие от электрических и электронных промышленных средств и устройств помехи, обусловленные полями.

Диапазон частот, определяющий электромагнитный режим работы экрана, как правило, соответствует условиям ближней зоны и излучения для частот порядка сотен мегагерц, поэтому принципы и особенности действия электромагнитного экрана необходимо рассматривать применительно к электрической и магнитной составляющей поля в отдельности. Различают следующие режимы работы: магнитостатику, электромагнитный режим и волновой.

Физическая сущность электромагнитного экранирования сводится к тому, что под действием источника электромагнитной энергии со стороны экрана, обращенной к источнику помехи, возникают заряды, а в его стенках — токи, поля которых во внешнем пространстве по интенсивности близки к полю источника, а по направлению противоположны ему, в результате чего происходит взаимная компенсация полей. В основу электромагнитного режима работы экрана положена теория ослабления электрического и магнитного полей за счет действия вихревых токов в толще материала экрана. Особенностью электромагнитного экрана является наличие электрических потерь мощности в толще экрана, вследствие чего экран нагревается. При относительно низких частотах вихревых токов мощность потерь прямо пропорциональна квадрату частоты. Поэтому при проведении экранирования выбирают материалы экрана с наибольшей удельной проводимостью или с большой магнитной проницаемостью.

С точки зрения волновых представлений эффект экранирования проявляется и из-за многократного отражения электромагнитных волн от поверхности экрана и затухания энергии волн в его металлической толще. Отражение электромагнитной энергии обусловлено несоответствием волновых характеристик диэлектрика, в котором расположен экран, и материала экрана. Чем сильнее это несоответствие, чем больше отличаются волновые сопротивления экрана и диэлектрика, тем интенсивнее частичный эффект экранирования, определяемый отражением электромагнитных волн. Такое рассмотрение является упрощенным, природа же электромагнитного экранирования гораздо сложнее.

Эффективность волнового экранирования aэ может быть записана как сумма потерь отражения R, переотражения A и поглощения B:

Это выражение известно как «модель линии передачи» для эффективности экранирования, и среди других моделей она выделяется важнейшим предположением, что связь между токами экрана и источника падающих волн ничтожно мала.

На эффективность экранирования оказывают существенное влияние частота поля, электропроводность и магнитная проницаемость материала экрана, конфигурация, размеры и толщина экрана. Принципиально следует иметь в виду, что эффективность экранирования зависит от наличия дефектов и отверстий в стенке экрана (трещин, дверных, вентиляционных и оконных проемов, кабельных вводов и отверстий для элементов обслуживания и сигнализации), а также от того, что внутри экранированных объемов могут возникать резонансные эффекты.

Эффективность экранирующих устройств ориентировочно может быть оценена величиной коэффициента экранирования aэ следующим образом:

Источник

Оцените статью
Разные способы