Способы дыхания у прокариот

Дыхание бактерий

Дыхание (биологическое окисление, катаболизм, диссимиляция) – совокупность биохимических процессов, сопровождающихся образованием энергии, необходимой для жизнеобеспечения клетки. При аэробном типе дыхания бактерии используют энергию в результате окисления веществ кислородом воздуха и способны развиваться только при наличии кислорода. При анаэробном типе дыхания микроорганизмы могут развиваться при отсутствии кислорода, получая энергию в результате ферментативного расщепления органических веществ. Существуют также факультативные анаэробы, растущие как при наличии, так и при отсутствии кислорода. Определяют тип дыхания микроорганизмов посевом культуры бактерий уколом в высокий столбик агара. При этом аэробы вырастают в верхней части среды, факультативные анаэробы – по всей длине укола, анаэробы – в нижней части посева.

У прокариотов возможны три пути получения энергии, которые различаются по выходу энергии (табл. 4):

1. Фотосинтез (фотосинтетическое фосфорилирование), в котором принимают участие энергия фотонов, хлорофилл или его аналоги – пигменты. Фотосинтез описан у очень небольшой группы микробов (цианобактерии или сине-зелёные водоросли), содержащих пигменты, сходные с хлорофиллом.

2. Дыхание (окислительное фосфорилирование) – окислительно-восстановительный процесс переноса взаимодействия субстрата со свободным кислородом и ферментами дыхательной цепи, цепь реакций биологического окисления. Большинство бактерий, называемых скотобактериями, получают энергию путем химических реакций.

Суть окисления заключается в присоединении кислорода или в отнятии водорода от субстрата, в результате чего происходит расщепление вещества и разрушение химических связей. Энергия этих связей выделяется в окружающую среду и почти на 70% улавливается клеткой в виде биологической энергии, в виде образования высокоэнергетических соединений, главными из которых у прокариот является АТФ (аденозинтрифосфат), УДФ (уридиндифосфат), ферментные комплексы НАДФ (никотинадениндиноклеотидфосфат) и ФАДФ (флавинаденин-динуклеотидфосфат), пирофосфат и волютин (орто- и метафосфаты).

Одним из основных путей реализации энергии, содержащейся в фосфорных связях органических соединений, является фосфорилирование — способность передавать фосфатный остаток другим веществам, что делает эти соединения нестабильными, приводя к их распаду с выделением энергии. Все процессы дыхания происходят на ЦПМ прокариот иначинаются с гликолиза, в результате которого образуется пировиноградная кислота (пируват — ПВК), которая является исходным материалом для дальнейших катаболических реакций.

По типу дыхания бактерии делятся на:

· облигатные аэробы (например, нейссерии, синегнойная палочка)растут только при наличии кислорода;

· облигатные анаэробы могут расти только без кислорода (пептострептококки, вейллонеллы, бактероиды фузобактерии, анаэробоспириллы);

· факультативные аэробы и анаэробы могут существовать как в присутствии кислорода, так и без него;

· аэротолерантные микробы (например спорообразующие анаэробные палочки -клостридии газовой гангрены, столбняка). — это анаэробные бактерии, устойчивые к кислороду, которые не размножаются в присутствии кислорода, но и не погибают;

· микроаэрофилы (стрептококки, актиномицеты и некоторые бациллы полости рта)представляют собой небольшую группу факультативно-анаэробных бактерий, устойчивых к действию кислорода в небольших концентрациях (до 5-10%);

· капнофилы(возбудители бруцеллеза, стрептококки полости рта)нуждаются в избыточном количестве углекислого газа (до 20%).

Тип дыхания бактерий зависит от набора ферментов. От окисляемого субстрата (донора) электрон водорода передается с помощью дегидрогеназы восстанавливаемому веществу (акцептору) — флавопротеину (ФАД) или желтому ферменту, который передает электрон водорода непосредственно кислороду с образованием перекиси водорода или следующему промежуточному передатчику — цитохрому, который, в конечном счете, передает его кислороду с образованием воды или перекиси водорода. Описано 3 типа цитохромов — А, В, С. Бактерии не все и не в одинаковой мере содержат все три компонента цитохрома. Так, например, строгие аэробы содержат все три компонента цитохрома. Они имеют самую длинную дыхательную цепь (дегидрогеназы, флавопротеины, цитохромы). Конечный акцептором электронов является кислород.

Читайте также:  Классифицируй такое животное как медведь по способу питания

Факультативные анаэробы содержат один или два компонента цитохрома, в то время как строгие анаэробы, как правило, не имеют цитохрома С, поэтому у них конечным акцептором электронов водорода являются неорганические вещества (нитраты, сульфаты, карбонаты). В аэробных условиях электрон водорода от флавопротеина может непосредственно передаваться кислороду с образованием перекиси водорода, гидроксиланиона, супероксиданиона.

Аэробы и факультативные анаэробы, в отличие от облигатных анаэробов, имеют ферменты, расщепляющие каталазу и пероксидазу, а также мощный фермент — супероксиддисмутазу (СОД) для нейтрализации токсичных радикалов кислорода. У облигатных анаэробов эти ферменты не вырабатываются, поэтому накопление токсических для мембран клеток соединений вызывает их разрыв и неизбежную гибель.

3. Брожение (субстратное фосфорилирование) — разновидность анаэробного дыхания, при котором и донором и акцептором водорода является органическое вещество.

При брожении происходит расщепление сложных органических веществ до более просто устроенных с выделением небольшого количества энергии. При поступлении глюкозы в клетку, происходит гликолиз и образуется ПВК. Дальнейшие ее превращения зависят от набора ферментов анаэробных бактерий. В зависимости от того какие конечные продукты образуются, выделяют разные типы брожения:

· Молочнокислое брожение вызывается лактобактериями, бифидобактериями, стрептококками, образуя из ПВК молочную кислоту (гомоферментативное брожение) или молочную, янтарную, уксусную кислоты, ацетон (гетероферментативное брожение). Эти бактерии применяются в производстве молочно-кислых продуктов: ряженки, простокваши, кефира, йогуртов и творога.

· Маслянокислое брожение. Возбудителями этого вида брожения являются анаэробные бактерии рода клостридии, а также бактероиды, фузобактерии и другие микроорганизмы, вызывающие у человека опасные анаэробные инфекции. Основным продуктом брожения является масляная,изомасляная, уксусная, валериановая кислоты.

· Пропионовокислое брожение также вызывается анаэробами — пропионибактериями (обитатели кожи и слизистой оболочкичеловека и животных могут вызывать анаэробные инфекции), которые используются в производстве сыров. Конечный продукт брожения — пропионовая кислота.

· Спиртовое брожение. Вызывают дрожжи. В результате спиртового
брожения образуется этиловый спирт, что издавна используется в пивоварении и виноделии.

· Бутиленгликолевое брожение. В результате брожения образуются бутиловый спирт, этиленгликоль, срероводород и другие токсические продукты. Этот вид брожения вызывают кишечная палочка и другие энтеробактерии, в том числе — возбудители кишечных инфекций — сальмонеллёза, дизентерии.

При субстратном фосфорилировании из глюкозы или других источников углерода выделяется незначительное количество энергии, так как образующиеся при этом продукты брожения (молочная кислота, спирты и др.) сохраняют в себе значительные количества энергии. Поэтому в анаэробных условиях бактериальная культура для получения необходимой энергии во много раз больше разлагает пищевого материала, чем в присутствии кислорода. Теплообразование при развитии бактериальной флоры в органическом материале (навоз, торф, мусор) может привести к его самовозгоранию.

Изучение ферментов бактерий имеет большое практическое значение для разработки методов диагностики (идентификации) возбудителей инфекционных заболеваний по набору ферментов, а также для создания современных биотехнологий получения продуктов питания в том числе молочнокислых продуктов, сыра, хлеба, вина, пива и т.д.

Читайте также:  Неравенство способы решения алгоритмы

Источник

Способы дыхания у прокариот

Дыхание прокариот (энергетический метаболизм) Энергетический метаболизм (катаболизм) это поток реакций, сопровождающихся мобилизацией энергии и преобразованием ее в электрохимическую (А(Хн+) или химическую (АТФ) форму, которая затем может быть использована во всех энергозависимых процессах.

Существуют группы прокариот, энергетический метаболизм которых не связан с превращениями органических соединений (прокариоты с фотолитои хемолитотрофным типом энергетического обмена). По отношению к такого рода энергетическим процессам термин «катаболизм» неприменим. У них функционирует только один поток превращений органических соединений углерода анаболический.

Энергетические процессы прокариот по своему объему (масштабности) значительно превосходят процессы биосинтетические, а их протекание приводит к существенным изменениям в окружающей среде. Разнообразны и необычны в этом отношении возможности прокариот, способы их энергетического существования. Все это вместе взятое сосредоточило внимание исследователей в первую очередь на изучении энергетического метаболизма прокариот.

Энергетические ресурсы. Организмы могут использовать не все виды энергии, существующей в природе. Недоступными для них являются ядерная, механическая, тепловая виды энергии. Чтобы теплота могла служить источником энергии, необходим большой перепад температур, который в живых организмах невозможен. Доступными для живых систем внешними источниками энергии (энергетическими ресурсами) являются электромагнитная (физическая) энергия (свет определенной длины волны) и химическая (восстановленные химические соединения). Способностью использовать энергию света обладает большая группа фотосинтезирующих организмов, в том числе и прокариот, имеющих фоторецепторные молекулы нескольких типов (хлорофиллы, каротиноиды, фикобилипротеины). Для всех остальных организмов источниками энергии служат процессы окисления химических соединений. Часто энергетическими ресурсами служат биополимеры, находящиеся в окружающей среде (полисахариды, белки, нуклеиновые кислоты), а также липиды. Прежде чем быть использованными, биополимеры должны быть гидролизованы до составляющих их мономерных единиц. Этот этап весьма важен по следующим причинам. Белки и нуклеиновые кислоты отличаются исключительным разнообразием. Количество видов белков исчисляется тысячами, после гидролиза же образуется только 20 аминокислот. Все разнообразие нуклеиновых кислот (ДНК и РНК) после гидролиза сводится к 5 видам нуклеотидов. Таким образом, расщепление полимеров до мономерных единиц резко сокращает набор химических молекул, которые могут быть использованы организмом.

Полимерные молекулы расщепляются до мономеров с помощью ферментов, синтезируемых и выделяемых прокариотами в окружающую среду (экзоферментов). Крахмал и гликоген гидролизуются амилазами, гликозидные связи целлюлозы расщепляются целлюлазой. Многие бактерии образуют пектиназу, хитиназу, агаразу и другие ферменты, гидролизующие соответствующие полисахариды и их производные. Белки расщепляются внеклеточными протеазами, воздействующими на пептидные связи. Нуклеиновые кислоты гидролизуются рибои дезоксирибонуклеазами. Образующиеся небольшие молекулы легко транспортируются в клетку через мембрану. Процесс распада жирных кислот локализован в клетке и включает несколько этапов. На первом из них жирная кислота с помощью соответствующего фермента превращается в КоА-производное, которое окисляется в Р-положении с последующим отщеплением ацетил-КоА. Другим продуктом реакции является КоА-производное жирной кислоты, укороченное на два углеродных атома. Ацетил-КоА по катаболическим каналам используется для получения клеткой энергии.

Процесс расщепления биополимеров не связан с образованием свободной, то есть доступной клетке, энергии. Происходящее при этом рассеивание энергии также невелико. Образовавшиеся мономеры подвергаются в клетке дальнейшим ферментативным превращениям, в результате которых путем перестройки химической структуры возникают молекулы, включающиеся на каком-либо этапе в качестве метаболитов в функционирующие клеточные катаболические системы. Основные из них: путь Эмбдена Мейергофа Парнаса (гликолиз), окислительный пентозофосфатный путь, путь Энтнера Дудорова и цикл трикарбоновых кислот (ЦТК). Общее для всех катаболических путей многоступенчатость процесса окисления исходного субстрата. На некоторых этапах окисление субстрата сопряжено с образованием энергии в определенной форме, в которой эта энергия может использоваться в самых разнообразных энергозависимых процессах.

Читайте также:  Рекомендации для учителя по вопросу способы пути формирования учебной мотивации

Таким образом, внешние доступные организмам источники энергии (свет, химические соединения) должны быть трансформированы в клетке в определенную форму, чтобы обеспечить внутриклеточные потребности в энергии.

Дыхание бактерий. Дыхание, или биологическое окисление, основано на окислительно-восстановительных реакциях, идущих с образованием АТФ-универсального аккумулятора химической энергии. Энергия необходима микробной клетке для ее жизнедеятельности. При дыхании происходят процессы окисления и восстановления: окисление отдача донорами (молекулами или атомами) водорода или электронов; восстановление присоединение водорода или электронов к акцептору. Акцептором водорода или электронов может быть молекулярный кислород (такое дыхание называется аэробным) или нитрат, сульфат, фумарат (такое дыхание называется анаэробным нитратным, сульфатным, фумаратным). Анаэробиоз (от греч. aer воздух, bios жизнь) жизнедеятельность, протекающая при отсутствии свободного кислорода. Если донорами и акцепторами водорода являются органические соединения, то такой процесс называется брожением. При брожении происходит ферментативное расщепление органических соединений, преимущественно углеводов, в анаэробных условиях. С учетом конечного продукта расщепления углеводов различают спиртовое, молочнокислое, уксусное и другие виды брожения.

По отношению к молекулярному кислороду бактерии можно разделить на три основные группы: облигатные, то есть обязательные, аэробы, облигатные анаэробы и факультативные анаэробы.

Облигатные аэробы это прокариоты, для роста которых кислород необходим. К ним относится большинство прокариотных организмов.

Облигатные анаэробы (клостридии ботулизма, газовой гангрены, столбняка, бактероиды и др.) растут только на среде без кислорода, который для них токсичен. При наличии кислорода бактерии образуют перекисные радикалы кислорода, в том числе перекись водорода и супероксиданион кислорода, токсичные для облигатных анаэробных бактерий, поскольку они не образуют соответствующие инактивирующие ферменты. Аэробные бактерии инактивируют перекись водорода и супероксид-анион кислорода соответствующими ферментами (каталазой, пероксидазой и супероксиддисмутазой).

Факультативные анаэробы могут расти как при наличии, так и при отсутствии кислорода, поскольку они способны переключаться с дыхания в присутствии молекулярного кислорода на брожение в его отсутствие. Они способны осуществлять анаэробное дыхание, называемое нитратным:
нитрат, являющийся акцептором водорода, восстанавливается до молекулярного азота и аммиака.

Среди облигатных анаэробов различают аэротолерантные бактерии, которые сохраняются при наличии молекулярного кислорода, но не используют его.

Для выращивания анаэробов в бактериологических лабораториях применяют анаэростаты специальные емкости, в которых воздух заменяется смесью газов, не содержащих кислорода. Воздух можно удалять из питательных сред путем кипячения, с помощью химических адсорбентов кислорода, помещаемых в анаэростаты или другие емкости с посевами.

Источник

Оцените статью
Разные способы