- Дыхательная система насекомых. Чем дышат насекомые?
- Мир небольших существ
- Немного из систематики
- Чем дышат насекомые?
- Дыхальца насекомых
- Трахеолы насекомых
- Дополнительные образования
- Каким органом дышат насекомые, обитающие в воде?
- Органы дыхания личинок
- Органы дыхания куколок
- Дыхание насекомых-паразитов
- Способы дыхания у насекомых
- Дыхательная система
Дыхательная система насекомых. Чем дышат насекомые?
Люди, плохо знающие биологию, обычно не представляют себе строение беспозвоночных. Есть ли у них кровь и имеется ли мозг? Дышат ли насекомые? Подавляющему большинству живых организмов для жизни необходим кислород. Он окисляет поступающие вещества – делит их на более простые по строению структуры. Растения тоже в процессе дыхания используют кислород. Лишь анаэробные микроорганизмы и некоторые многоклеточные животные не нуждаются в этом элементе. Однако и они дышат, только используют для окисления другие органические или неорганические вещества.
Мир небольших существ
Насекомые – маленькие организмы, размеры которых не превышают нескольких сантиметров. Их строение не позволяет увеличивать объем и вес в современных условиях. Этого нельзя сказать о древних членистоногих, живших во времена динозавров и еще раньше. В те времена атмосфера была совсем иной: другая плотность воздуха, состав газов. Да и сама планета Земля весила меньше. Стрекозы в далеком прошлом достигали размеров более полуметра.
Чем дышат насекомые? И что не дало им эволюционировать до размеров, к примеру, кошки в современных условиях? Ученые считают, что это своеобразная дыхательная система.
Немного из систематики
Насекомые относятся к подтипу трахейнодышащие (Tracheata). В тип членистоногих также входят подтипы жабродышащих (ракообразные) и хелицеровых (пауки, скорпионы, клещи и др.).
Чем дышат насекомые?
Само название подтипа говорит о способе дыхания. Однако хелицеровые дышат подобным же образом. Насекомые приобрели в ходе эволюции сложную систему трахей. Трахеи – это внутренние трубочки, проводящие воздух к клеткам тела. Трахейная система устроена непросто, потому что трахеи ветвятся на огромное количество тонких трубочек. Каждая из них подходит к небольшой группе клеток. Сеть трахей у насекомых аналогична системе кровеносных сосудов и капилляров у позвоночных животных.
Дыхальца насекомых
Воздух в трахеи входит через дыхальца – особые отверстия на теле насекомых. Дыхальца – стигмы – расположены парно, обычно по бокам тела. Регуляция поступления воздуха обеспечивается специальными запирательными устройствами.
От каждого дыхальца обычно отходит три симметричных больших ветви трахеи:
- Дорзальная. Обеспечивает кислородом спинной сосуд с гемолимфой и дорзальную мускулатуру.
- Висцеральная. Обслуживает пищеварительную систему и половые органы.
- Вентральная. Обслуживает брюшную мускулатуру и нервную цепочку.
Трахеолы насекомых
Окончания трахей разветвляются на очень тонкие капиллярные трубочки – трахеолы. Их диаметр меньше 1 микрометра. Трахеолы разветвляются в межклеточном пространстве, оплетают клетки. Они являются функциональной частью трахейной системы, обеспечивающей диффузию кислорода в клетки тела.
Дополнительные образования
Чем дышит большинство насекомых? Органы дыхания – это трахеи. Однако некоторые членистоногие имеют еще и воздушные мешки. Такое строение напоминает легкие или, скорее, воздушные мешки птиц для увеличения объема воздуха в организме. Раздутые участки имеются у быстролетающих насекомых (пчелы, мухи). Они лежат по ходу трахейных стволов. В результате сокращения мышц тела при полете воздушные мешки сжимаются и расправляются, увеличивая поступление и выход воздуха.
Каким органом дышат насекомые, обитающие в воде?
Например, паук-серебрянка, обитающий в средней полосе России, большую часть жизни проводит под водой. Он носит с собой запас пузырьков воздуха. Так что ему не пришлось менять что-то в дыхательной системе. У пауков подобная трахейная система, как и у насекомых.
Жук-плавунец – распространенный обитатель прудов средней полосы России. Тоже дышит трахеями. Он периодически поднимается к поверхности воды, выставляет кончик брюшка. Воздух попадает под надкрылья и сохраняется там. Запас кислорода водяной жук носит с собой.
То же самое делают и остальные водные жуки. Вертячка охотится на поверхности пруда, однако, ныряя при опасности, также захватывает с собой воздух. Он выглядит как блестящая оболочка на конце брюшка.
Многие водные клопы также захватывают воздух в виде пузырька с поверхности. Как, например, гладыш. Он носит с собой пузырек воздуха, прикрепленный на конце брюшка. Такое приспособление помогает ему еще и лучше плавать.
Часть водных клопов (водяной скорпион, ранатра) имеют особую трубку на конце брюшка. Она состоит из двух желобкообразных половинок. Клоп двигает брюшком – делает дыхательные движения. По трубке воздух поступает к дыхальцам.
Органы дыхания личинок
Взрослые насекомые дышат при помощи трахей. Личинки же имеют более разнообразные органы дыхания. Личинки каких насекомых дышат трахеями? Сухопутные представители имеют трахейную систему. Например, у гусениц бабочек есть 9 пар стигм по бокам тела. Первая пара на груди, остальные — на сегментах брюшка. Иногда вторая пара дыхалец бывает закрыта.
У большинства водных насекомых и их личинок также имеется трахейная система. Однако огромное количество представителей имеет образования, похожие на жабры. Это выросты, расположенные на местах дыхалец. Кислород поступает через тонкие покровы трахейных выростов в организм. Так дышат личинки поденок, веснянок, ручейников. Личинки разнокрылых стрекоз тоже имеют трахейные жабры, однако расположены они в кишечнике, то есть внутри организма.
Мотыль имеет нитевидные жабры, но в большом количестве поглощает кислород всей поверхностью тела. В организме мотыля всегда имеется запас кислорода. По этой причине он может жить в загрязненных водоемах.
Личинки перистоусого комарика (семейство комары толстохоботные) дышат кислородом, растворенным в воде, поглощая его всей поверхностью тела.
Органы дыхания куколок
Чем дышат насекомые, находящиеся на стадии куколки? Считается, что третья стадия развития насекомого неподвижна. Однако даже куколки бабочек могут шевелить брюшком. А куколка божьей коровки кивает головой, вероятно, отпугивая врагов. Насекомые этой стадии дышат трахеями.
Среди куколок водных насекомых имеются очень подвижные особи. Это, например, кровососущие комары. Их куколки регулярно поднимаются к поверхности воды для всасывания воздуха через специальные трубочки на конце брюшка.
Куколка перистоусого комарика похожа на куколку обыкновенного комара. Но она не поднимается к поверхности воды до выхода взрослой особи. Органом дыхания служат покровы тела.
Дыхание насекомых-паразитов
Чем дышат насекомые, не имеющие трахей? Органами дыхания некоторых первичнобескрылых насекомых и личинок, обитающих в тканях, служат кожные покровы. Они достаточно тонкие для прохождения газов. Углекислый газ также выделяется через кутикулу, что частично наблюдается и у насекомых, имеющих трахеи.
Насекомые часто двигают брюшком – делают дыхательные движения. Частота дыхательных движений возрастает во время полета. Дыхательные мышцы сокращаются и расслабляются, например, у пчелы в состоянии покоя около 40 раз в минуту. Во время полета в несколько раз чаще.
У более примитивных насекомых дыхальца не закрываются. Однако они защищены волосками от попадания мусора. У более сложноустроенных членистоногих стигмы способны открываться и закрываться для регуляции поступления воздуха. Кроме того, часть дыхалец может служить для вдоха, а другая часть – для выдоха воздуха.
Интересно, что стигмы у насекомых имеют разную форму и цвет. Они могут быть круглые, овальные, треугольные. Их цвет иногда отличается от окраски окружающей кутикулы.
Таким образом, природа создала трахейную систему еще до появления легких. Такая система отлично организована. Система дыхалец обеспечивает постоянный ток воздуха. Кислород разносится ко всем клеткам тела.
Источник
Способы дыхания у насекомых
Дыхательная система
Своеобразие дыхательной системы (рис. 25). Дыхательная система насекомых своеобразна и характеризуется тем, что снабжение тканей и клеток тела кислородом происходит непосредственно. Она состоит из очень большого числа сильно разветвленных воздухоносных трубок — трахей, пронизывающих все тело; трахеи открываются наружу особыми отверстиями — дыхальцами, а мельчайшие разветвления трахей образуют трахейные капилляры — трахеолы. Помимо того, у ряда насекомых отдельные крупные трахейные стволы образуют сильные расширения — воздушные мешки. В целом дыхательную систему насекомых нередко обозначают трахейной системой.
Рис. 25. Трахейная система. А — окончание трахеи с трахеолами; Б — часть главнейших стволов трахей у черного таракана; В — схема поперечного ветвления трахей в сегменте; Г — схема продольных стволов трахей в сегментах (по Веберу и др.): трл — трахеолы, тр — трахеи, тем — тенидии, сер — сердце, вд — верхняя диафрагма, к — кишечник, ст — стигма, нд — нижняя диафрагма, нц — нервная цепочка
Трахеи, начинаясь на поверхности тела дыхальцами, многократно ветвятся внутри тела, оплетают ткани и органы и входят даже внутрь отдельных клеток. Они эктодермального происхождения и их стенки сходны по строению с кожными покровами: изнутри они выложены хитиновой интимой, соответствующей кутикуле кожи, и подстилаются слоем клеток — продолжением кожной гиподермы. Интима дает на своей внутренней поверхности нитевидные утолщения — тенидии, которые пробегают в виде спирали по стенке трахей; эти спиральные утолщения препятствуют сплющиванию трахей при движении и изгибах тела и, следовательно, обеспечивают нормальную работу трахей. Расположение трахей внутри тела различно у разных насекомых, но у крылатых возникает ряд продольных стволов, а также поперечные перемычки между ними. Таким путем обеспечивается трахейная связь между сегментами и между боковыми сторонами тела.
Дыхальца, или стигмы, располагаются по бокам сегментов и являются метамерными образованиями: в принципе каждый сегмент имеет по паре дыхалец — по одному с каждой стороны. Однако дыхальца исчезли на головных сегментах, на одном из сегментов груди и на вершинных сегментах брюшка; поэтому нормальным числом дыхалец у насекомых считается 10 пар — 2 пары грудных и 8 пар брюшных. Трахейная система с таким числом дыхалец называется голопнейстической; она характерна для большинства взрослых насекомых и личинок насекомых с неполным превращением. Но у ряда высших насекомых и особенно у их личинок и куколок число дыхалец сокращается, возникает гемипнейстическая система, которая, в свою очередь, подразделяется на несколько вариантов — перипнейстический тип (на груди лишь одна пара дыхалец), амфипнейстический (одна пара грудных и 2-3 пары на вершине брюшка), метапнейстический (развита лишь одна пара дыхалец на конце брюшка) и др. Существует еще и апнейстическая система, характеризующаяся отсутствием дыхалец; воздух проникает в замкнутую трахейную систему через поверхность тела или через особые выпячивания — трахейные жабры. Этот тип свойствен многим живущим в воде личинкам, а также личинкам некоторых паразитических насекомых — наездников и мух-тахин.
Обычно дыхальца имеют вид овального или круглого отверстия с утолщенными краями, образующими кольцеобразную раму дыхальца. Они снабжены фильтрующим приспособлением в виде волосков и выростов, а также сложным запирающим аппаратом; с помощью специальных мышц этого аппарата дыхальца могут закрываться и не пропускать воздуха, а фильтрующее устройство предохраняет дыхательную систему от засорения при поступлении в нее воздуха.
Трахеолы лишены спиральной выкладки — тенидий, представляют собою тончайшие окончания трахейной системы и их диаметр не превышает 1 мк. Разветвления трахей оплетают органы и ткани тела, а трахейные капилляры — трахеолы — проникают внутрь отдельных клеток. Воздушные мешки представляют собой расширения некоторых, преимущественно продольных, стволов и отличаются от нормальных трахей отсутствием спиральных утолщений. Они известны у двукрылых, жуков, саранчовых, пчел и других насекомых.
Дыхание. При дыхании воздух через дыхальца проникает в крупные трахейные стволы и далее по разветвлениям трахей достигает трахеол, через которые и осуществляется отдача кислорода клеткам и тканям. Поступление воздуха в трахеи происходит двояко: либо пассивно, путем диффузии, что свойственно многим мягкотелым личинкам и ряду мало активных форм, либо активно, с помощью дыхательных движений. При дыхательных движениях брюшко изменяет свой объем путем попеременного его удлинения и укорочения или путем уплощения и расширения в дорсо-вентральном направлении; при этом те или иные дыхальца открываются или закрываются, выполняя вдыхательную или выдыхательную функцию. Ритм дыхательных движений, а отсюда и интенсивность трахейной вентиляции, зависит от вида насекомого, его состояния и внешних условий. Так, медоносная пчела в покое может совершать 40 дыхательных движений в минуту, а при работе — до 120; у саранчовых с повышением температуры среды отмечено повышение их числа с 6 до 26 и более.
Закрывание и открывание дыхалец имеет значение не только как регулирующих дыхание клапанов, но и контролирует диффузию газов и водяных паров при дыхании. Установлено, что избыток углекислоты или недостаток кислорода в воздухе удлиняют период открытия дыхалец; в первом случае — вследствие замедления диффузии углекислоты из трахей ввиду повышенного ее содержания в воздухе, во втором — вследствие быстрого расхода кислорода. Очевидно, что применение газообразных ядов в борьбе с вредными насекомыми будет более эффективным в средах с избытком углекислого газа или с недостатком кислорода. Через дыхальца происходит и потеря воды из организма; поэтому влажность окружающего воздуха может также влиять на работу дыхалец.
С помощью дыхательных движений или диффузии воздуха при открытых дыхальцах воздух легко проникает в крупные трахеи. Проникновение же его в тонкие трахеи и в трахеолы путем нагнетания, видимо, невозможно вследствие огромного капиллярного сопротивления. В этом случае, согласно диффузионной теории А. Крога, кислород может поступать путем диффузии вследствие различия его парциального давления в поступающем воздухе и в концевых разветвлениях трахейной системы; расчеты показали, что чрезвычайная разветвленность трахей обеспечивает возможность поступления необходимого количества кислорода даже при том низком коэффициенте диффузии, который характерен для этого газа. В дальнейшем английский физиолог В. Вигглсворт выдвинул свою теорию трахеальной диффузии, согласно которой поступление в трахеолы воздуха из трахей зависит от изменения количества жидкости в трахеолах. При усилении жизнедеятельности насекомого в его тканях повышается содержание продуктов обмена, что повышает осмотическое давление в тканях и крови, т. е. создает гипертоническую среду. Жидкость из трахеол начинает диффундировать в клетки тканей, а ее место замещается поступающим из трахей воздухом. В состоянии покоя, наоборот, жидкость поступает из тканей в трахеолы, вытесняет из них воздух и потребление кислорода уменьшается (рис. 26).
Рис. 26. Схема трахеольной диффузии воздуха (по Вигглсворту): пок — ткань в покое, деят — деятельная ткань, трл — трахеолы, тр — трахея; слева трахеолы наполнены водой, справа — наполнены воздухом
Вентиляция трахейной системы обеспечивает не только поступление в организм кислорода, но и удаление из него углекислого газа. Это достигается как при дыхательных движениях путем выдыхания, так и с помощью диффузии через кожу. Последний способ имеет немаловажное значение ввиду того, что диффузия углекислоты через животные ткани совершается в 35 раз быстрее, чем у кислорода; этим путем у насекомых удаляется до 25% всей выделяемой углекислоты.
Биохимически дыхание представляет собой окислительный процесс, идущий за счет кислорода воздуха и сопровождающийся выделением углекислого газа. Процесс окисления идет при участии окислительных ферментов — оксидаз, сопровождается постепенным распадом молекул расходуемых соединений — белков, жиров или углеводов — и выделением энергии. Распад названных веществ в конечном счете завершается образованием углекислого газа, воды, а для белков — еще и аммиака; освобождающаяся при этом преимущественно тепловая и механическая энергия идет на поддержание жизнедеятельности организма. Этим определяется физиологическая необходимость дыхания.
Так как при дыхании поглощаемые и выделяемые вещества газообразны, процесс дыхания называется также газообменом; последний является одним из звеньев общего обмена веществ. При этом соотношение между объемом выделенного углекислого газа и поглощенного кислорода, или дыхательный коэффициент, не постоянен. При окислении углеводов дыхательный коэффициент равен единице, так как количество поглощенных молекул кислорода и выделенных молекул углекислого газа равно между собой (С6Н12О6+6О2=6СО2+6Н2О), а по закону Авогадро и объемы этих газов равны. Если газообмен идет за счет жиров и белков, т. е. менее окисленных соединений, дыхательный коэффициент снижается до 0,7-0,8. Определение дыхательного коэффициента, как и интенсивности дыхания, производится при помощи особых приборов — микрореспирометров.
Особые формы дыхания. Не все насекомые обладают трахейной системой; некоторые мелкие формы из числа первичнобескрылых (Apterygota), а также личинки некоторых внутренних паразитов из числа наездников и мух лишены трахей и дышат через кожу. Диффузия кислорода через кожу происходит и при апнейстическом типе дыхания.
У личинок паразитических насекомых помимо кожного дыхания наблюдаются и другие способы. Так, некоторые включают свою трахейную систему в трахеи хозяина, другие прорывают покровы хозяина и выставляют свои дыхальца наружу, третьи имеют специальные выросты, служащие местом наиболее интенсивного газообмена.
Водные насекомые имеют еще более разнообразное дыхание; одни из них дышат атмосферным воздухом, другие с помощью жабр используют растворенный в воде воздух. Дыхание атмосферным воздухом происходит по-разному. Некоторые, например жуки плавунец и водолюб, живя в воде, расходуют имеющийся запас воздуха и для его возобновления вынуждены время от времени подниматься до водной поверхности. При этом, например, жук-плавунец выставляет наружу конец брюшка, отгибает его от надкрылий и создает запас воздуха в образовавшейся полости; с этим запасом он погружается в воду и использует его с помощью дыхалец, которые расположены у него на спинной стороне брюшка, т. е. под надкрыльями. Некоторые жуки и их личинки добывают в воде атмосферный воздух из растений — путем включения своей трахейной системы в воздухоносные сосуды растений, либо путем использования выделяемых ими пузырьков воздуха.
Жаберное дыхание характерно для личинок многих водных насекомых — поденок, стрекоз, веснянок, ручейников, некоторых сетчатокрылых и двукрылых и пр. В большинстве эти жабры пронизаны трахеями, т. е. относятся к числу трахейных жабр (рис. 27); газообмен происходит через их стенки. По своему строению они разнообразны, но часто имеют вид наружных ветвистых или пластинчатых образований, сидящих на месте дыхалец; сами же дыхальца при этом отсутствуют (апнейстический тип). У личинок низших стрекоз в жабры превращены хвостовые придатки, тогда как высшие стрекозы имеют своеобразные внутренние жабры, связанные с задней кишкой; задний ее отдел, именно прямая кишка, снабжена жаберными лепестками, пронизанными многочисленными трахеями. Личинка через анальное отверстие периодически набирает и выпускает воду, которая омывает стенки прямой кишки, отдает свой кислород и поглощает углекислоту; выбрасывание воды производится с силой и используется личинкой для движения по принципу ракетного двигателя. У личинок комаров наблюдается два типа водного дыхания — с помощью четырех трахейных жабр на конце брюшка и с помощью дыхательной трубки на VIII сегменте брюшка, в которую открываются дыхальца; в последнем случае дыхание происходит атмосферным воздухом, для чего дыхательная трубка выставляется на поверхность воды.
Рис. 27. Трахейные жабры. А — личинка жука вертячки; Б — личинка поденки (с удаленными левыми крыльями); В — схема трахеации жабр. (по Вейссьеру и др. из Кузнецова): ж — жабры, тр — трахеи
Источник