Способы доказательства тригонометрических тождеств

Как доказать тригонометрическое тождество?

Тождество – равенство, верное при любых значениях переменных, кроме тех при которых какая-либо часть тождества не имеет смысла.

А вот выражение \(\frac=x\) является тождеством только при условии \(x≠0\) (иначе левая часть не существует).

Как доказывать тождество?

Рецепт до одури прост:

Чтобы доказать тождество нужно доказать, что его правая и левая части равны, т.е. свести его к виду «выражение» = «такое же выражение».

Для того, чтоб это сделать можно:

  1. Преобразовывать только правую или только левую часть.
  2. Преобразовывать обе части одновременно.
  3. Использовать любые допустимые математические преобразования (например, приводить подобные; раскрывать скобки; переносить слагаемые из одной части в другую, меняя знак; умножать или делить левую и правую часть на одно и то же число или выражение, не равное нулю и т.д.).
  4. Использовать любые математические формулы.

Именно четвертый пункт при доказательстве тождеств используется чаще всего, поэтому все формулы тригонометрии нужно знать, помнить и уметь использовать.

Пример. Доказать тригонометрическое тождество \(\sin⁡2x=2\sin⁡x\cdot \cos\)
Решение:

\(\sin⁡2x=2 \sin⁡x\cdot \cos \)

Будем преобразовывать левую часть.
Представим \(2x\) как \(x+x\)…

Левая часть равна правой – тождество доказано.

Будем преобразовывать только левую часть. Приведем слагаемые к общему знаменателю.

Применим в числителе вездесущие основное тригонометрическое тождество: \(\sin^2⁡+\cos^2<⁡x>=1\).

Левая часть равна правой, тождество доказано.

Здесь будем преобразовывать только правую часть, стремясь свести ее к левой. Левую же оставляем неизменной. Вспоминаем формулу двойного угла для косинуса .

Теперь сделаем почленное деление в дроби (т.е. применим правило для сложения дробей в обратную сторону): \(\frac\) \(=\) \(\frac\) \(+\) \(\frac\)

Первую дробь правой части сократим, а ко второй применим свойство степени : \(\frac\) \(=\) \((\frac)^n\) .

Ну, а синус деленный на косинус равен тангенсу того же угла:

Левая часть равна правой, тождество доказано.

Здесь будем преобразовывать обе части:
— в левой: преобразуем \(\cos⁡2t\) по формуле двойного угла;
— а в правой \(ctg(π+t)\) по формуле приведения .

Теперь работаем только с левой частью.
В числителе воспользуемся формулой сокращенного умножения , в знаменателе вынесем за скобку синус.

Сократим дробь на \(\cos<⁡t>+\sin<⁡t>\).

Почленно разделим дробь, превратив ее в две отдельные дроби.

Читайте также:  Вычислите наиболее удобным способом значение выражения 631

Первая дробь это котангенс , а вторая равна единице.

Левая часть равна правой, тождество доказано.

Как видите, все довольно несложно, но надо знать все формулы и свойства.

Как доказать основное тригонометрическое тождество

Два простых способа вывести формулу \(\sin^2x+\cos^2x=1\). Нужно знать только теорему Пифагора и определение синуса и косинуса.

Ответы на часто задаваемые вопросы:

Вопрос: Как определить, что в тождестве надо преобразовывать – левую часть, правую или обе вместе?
Ответ: Нет никакой разницы – в любом случае вы получите один и тот же результат. Например, в третьем примере мы легко могли бы получить из левой части \(1-tg^2 t\) правую \(\frac\) (попробуйте сделать это сами). Или преобразовывать обе, с тем чтоб они «встретились посередине», где-то в районе \(\frac<\cos^2⁡t-\sin^2⁡t><\cos^2⁡t>\) \(=\) \(\frac<\cos^2⁡t-\sin^2⁡t><\cos^2⁡t>\) . Поэтому вы можете доказывать любым удобным вам способом. Какую «тропинку» видите – по той и идите. Главное только – преобразовывайте «законно», то есть понимайте на основании какого свойства, правила или формулы вы делаете очередное преобразование.

Источник

Основное тригонометрическое тождество

О чем эта статья:

9 класс, 10 класс, ЕГЭ/ОГЭ

Связь между sin и cos одного угла

Вы уже наверняка знаете, что тождественный — это равный.

Основные тригонометрические тождества — это равенства, которые устанавливают связь между синусом, косинусом, тангенсом и котангенсом одного угла. Это значит, что любую из этих функций можно найти, если известна другая функция.

Ключ к сердцу тригонометрии — основное тригонометрическое тождество. Запомните и полюбите его, чтобы отношения с тригонометрией сложились самым наилучшим образом:

sin 2 α + cos 2 α = 1

Из основного тождества вытекают равенства тангенса и котангенса, поэтому оно — ключевое.

Равенство tg 2 α + 1 = 1/cos 2 α и равенство 1 + сtg 2 α + 1 = 1/sin 2 α выводят из основного тождества, разделив обе части на sin 2 α и cos 2 α.

В результате деления получаем:

Поэтому основному тригонометрическому тождеству уделяется максимум внимания. Но какая же «метрия» может обойтись без доказательств. Видите тождество — доказывайте, не раздумывая.

sin 2 α + cos 2 α = 1

Сумма квадратов синуса и косинуса одного угла тождественно равна единице.

Чтобы доказать тождество, обратимся к теме единичной окружности.

Единичная окружность — это окружность с центром в начале прямоугольной декартовой системы координат. Радиус единичной окружности равен единице.

Докажем тождество sin 2 α + cos 2 α = 1

    Итак, нам известны координаты точки A (1; 0).

Произвольный угол α, тогда cos α = x0 = ОB.

  • Если развернуть точку A на угол α, то точка A становится на место точки A1.
  • По определениям:
    • Синус угла (sin α) — это отношение противолежащего катета к гипотенузе.
    • Косинус угла (cos α) — это отношение прилежащего катета к гипотенузе.

    Это значит, что точка A1 получает координаты cos α, sin α.

  • Опускаем перпендикулярную прямую A1B на x0 из точки A1.

    Читайте также:  Способы юридической техники это тест

    Образовался прямоугольный треугольник OA1B.

    |OB| = |x|.

    Гипотенуза OA1 имеет значение, равное радиусу единичной окружности.

    |OA1| = 1.

    Применяя полученное выражение, записываем равенство по теореме Пифагора, поскольку получившийся угол — прямой:

    |A1B| 2 + |OB| 2 = |OA1| 2 .

    Записываем в виде: |y| 2 + |x| 2 = 1 2 .

    Это значит, что y 2 + x 2 = 1.
    sin угла α = y
    cos угла α = x

    Вставляем данные угла вместо координат точек:

    OB = cos α
    A1B = sin α
    A1O = 1

  • Получаем основное тригонометрическое тождество: sin 2 α + cos 2 α = 1.
    Что и требовалось доказать.
  • Основное тригонометрическое тождество связывает синус угла и косинус угла. Зная одно, вы легко можете найти другое. Нужно лишь извлечь квадратный корень по формулам:

    • sin α = ±
    • cos α = ±

    Как видите, перед корнем может стоять и минус, и плюс. Основное тригонометрическое тождество не дает понять, положительным или отрицательным был исходный синус/косинус угла.

    Как правило, в задачках с подобными формулами уже есть условия, которые помогают определиться со знаком. Обычно такое условие — указание на координатную четверть. Таким образом без труда можно определить, какой знак нам требуется.

    Тангенс и котангенс через синус и косинус

    • Синус угла — это ордината y.
    • Косинус угла — это абсцисса x.
    • Тангенс угла — это отношение ординаты к абсциссе.
    • Котангенс угла — это отношение абсциссы к ординате.

    Из всего этого множества красивых, но не сильно понятных слов, можно сделать вывод о зависимости одного от другого. Такая связь помогает отдельно преобразовывать нужные величины.

    • tg α =
    • ctg α =

    Исходя из определений:

    • tg α = =
    • ctg α = =

    Это позволяет сделать вывод, что тригонометрические тождества


    задаются sin и cos углов.

    Отсюда следует, что тангенс угла — это отношение синуса угла к косинусу. А котангенс угла — это отношение косинуса к синусу.

    Отдельно стоит обратить внимание на то, что тригонометрические тождества


    верны для всех углов α, значения которых вписываются в диапазон.

    • Например, выражение применимо для любого угла α, не равного + π + z, где z — это любое целое число. В противном случае, в знаменателе будет стоять 0.

    применимо для любого угла α, не равного π * z, где z — это любое целое число.

    Связь между тангенсом и котангенсом

    Уж насколько очевидной кажется связь между ранее рассмотренными тождествами, настолько еще более наглядна связь между тангенсом и котангенсом одного угла.

    • Тождество записывается в следующем виде:
      tg α * ctg α = 1.

    Такое тождество применимо и справедливо при любых углах α, значение которых не равняются π/2 * z, где z — это любое целое число. В противном случае, функции не будут определены.

    Как и любое другое, данное тригонометрическое тождество подлежит доказательству. Доказывать его очень просто.

    tg α * ctg α = 1.

    ctg α = x/y

  • Отсюда следует, что tg α * ctg α = y/x * x/y = 1
  • Преобразовываем выражение, подставляем и ,
    получаем:
  • Читайте также:  Амплитудный способ управления тиристором

    Получается, что тангенс и котангенс одного угла, при котором они имеют смысл — это взаимно обратные числа.

    Если числа a и b взаимно обратные — это значит, что число a — это число, обратное числу b, а число b — это число, обратное числу a. Кроме того, это значит, что числу a обратно число b, а числу b обратно число a. Короче, и так, и эдак.

    Тангенс и косинус, котангенс и синус

    Все тождества выше позволяют сделать вывод, что тангенс угла связан с косинусом угла, а котангенс угла — с синусом.

    Эта связь становится очевидна, если взглянуть на тождества:

    • tg 2 α + 1 =

    Сумма квадрата тангенса угла и единицы равна числу, обратному квадрату косинуса этого угла.

    • 1 + ctg 2 α =

    Сумма единицы и квадрата котангенса угла равна числу, обратному квадрату синуса этого угла.

    Вывести оба этих тождества можно из основного тригонометрического тождества:
    sin 2 α + cos 2 α = 1.

    1. Для этого нужно поделить обе части тождества на cos 2 α, где косинус не равен нулю.
    2. В результате деления получаем формулу tg 2 α + 1 =
    3. Если обе части основного тригонометрического тождества sin 2 α + cos 2 α = 1 разделить на sin 2 α, где синус не равен нулю, то получим тождество:
      1 + ctg 2 α = .
    4. Отсюда можно сделать вывод, что тригонометрическое тождество tg 2 α + 1 = применимо для любого угла α, не равного + π + z, где z — это любое целое число.
    5. А тригонометрическое тождество 1 + ctg 2 α = применимо для любого угла, не равного π * z, где z — это любое целое число.

    Хорошо бы выучить все формулы и запомнить формулировки тождеств наизусть. Чтобы это сделать, сохраняйте себе табличку с основными формулами.

    Основные тригонометрические тождества

    sin 2 α + cos 2 α = 1

    tg 2 α + 1 =

    1 + ctg 2 α =

    Чтобы тратить еще меньше времени на решение задач, сохраняйте таблицу значений тригонометрических функции углов, которые чаще всего встречаются в задачах.

    Примеры решения задач

    Разберем пару задачек, для решения которых нужно знать основные тождества. Рассмотрите внимательно предложенные решения и потренируйтесь самостоятельно.

    Задачка 1. Найдите cos α, tg α, ctg α при условии, что sin α = 12/13.

      Чтобы решить задачу, необходимы следующие тригонометрические тождества:



    Выражаем cos α из тригонометрической единицы:



    Далее подставляем значения sin α:



    Вычисляем:



    Нам известны значения sin α и cos α, поэтому можно легко найти тангенс, используя формулу:



    Таким же образом, используя формулу, вычисляем значение котангенса:

    Задачка 2. Найдите значение cos α,
    если:

      Чтобы решить задачу, необходимы следующие тригонометрические тождества:



    Выражаем cos α из тригонометрической единицы:



    Далее подставляем значения sin α:

  • Вычисляем:
  • То же самое проделываем со вторым значение sin α

    Подставляем значения sin α:

  • Вычисляем:
  • Как видите, задачи решаются достаточно просто, нужно лишь верно применять формулы основных тождеств.

    Источник

    Оцените статью
    Разные способы