Способы доказательства теоремы пифагора 9 класс различные проекты

Проект по математике «Различные способы доказательства теоремы Пифагора»

МБОУ «Варсковская СШ»

Научно-исследовательская работа по математике.

Тема: «Различные способы доказательства теоремы Пифагора»

Авторы проекта : ученики 8 класса Гавриков Дмитрий и Сусликова Ульяна

Руководитель : Локоткова Оксана Анатольевна

2.1 Биография Пифагора

2.2 История открытия теоремы Пифагора.

2.3 Способы доказательства теоремы Пифагора.

В этом году на уроке геометрии мы познакомились с одной из важнейших теорем для прямоугольного треугольника, известной с древних времен – теоремой Пифагора. Кратко познакомились с историей этой теоремы, рассмотрели ее доказательство, но также узнали, что это одно из ее доказательств. Трудно найти человека, для которого имя Пифагора не ассоциировалось бы с его теоремой. Почти у каждого сохранились воспоминания о «пифагоровых штанах» — квадрате на гипотенузе, равновеликом двум квадратам на катетах. Причина такой популярности теоремы Пифагора очевидна: простота, красота и широкая значимость. В самом деле, теорема Пифагора проста, но не очевидна. Это сочетание двух противоречивых начал и придает ей особую притягательную силу, делает ее красивой. Но, кроме того, теорема Пифагора имеет огромное значение: она применяется в геометрии буквально на каждом шагу, и тот факт, что существует более 100 различных доказательств этой теоремы (геометрических, алгебраических, механических и т.д.), свидетельствует о гигантском числе ее конкретных реализаций. Зная теорему Пифагора можно находить ее новые применения и способы доказательств. Это и то, что теорема Пифагора была известна задолго до его рождения нас и поразило. Мы заинтересовались и решили провести исследование.

Цель исследования : рассмотрение других способов доказательства теоремы Пифагора.

Найти новые способы доказательства теоремы Пифагора.

Исследовать различные способы доказательства данной теоремы, не рассматриваемые в школе.

Продемонстрировать другим учащимся существование новых способов доказательства теоремы Пифагора.

Основной метод, который мы использовали в своей работе – это метод исследования, систематизации и обработки данных.

Гипотеза: возможно ли узнать, другие способы доказательства теоремы Пифагора, не изучаемые в школьном курсе геометрии.

Объект исследования: множество различных доказательств теоремы.

Предмет исследования: теорема Пифагора

Пифагор родился на острове Самос, одном из самых цветущих островов Ионии, в семье богатого ювелира. Ещё до рождения он был посвящен своими родителями свету Аполлона. Он был очень красив и с детства отличался разумом и справедливостью. С юных лет Пифагор стремился проникнуть в тайны Вечной Природы, постичь смысл Бытия. Знания, полученные им в храмах Греции, не давали ответов на все волнующие его вопросы, и он отправился в поисках мудрости в Египет. В течение 22 лет он проходил обучение в храмах Мемфиса и получил посвящение высшей степени. Здесь же он глубоко изучил математику, “науку чисел или всемирных принципов”, из которой впоследствии сделал центр своей системы. Из Мемфиса, по приказу вторгшегося в Египет Камбиза, Пифагор вместе с египетскими жрецами попадает в Вавилон, где проводит еще 12 лет. Здесь он имеет возможность изучить многие религии и культы, проникнуть в мистерии древней магии наследников Зороастра. Приблизительно в 530 году Пифагор, наконец, возвратился в Грецию и вскоре переселился в Южную Италию, в г. Кротон. В Кротоне он основал пифагорейский союз, который был одновременно философской школой, политической партией и религиозным братством. Школа Пифагора дала Греции целую плеяду талантливых философов, физиков и математиков. С их именем связаны в математике систематическое введение доказательств в геометрию, рассмотрение ее как абстрактной науки, создание учения о подобии, доказательство теоремы, носящей имя Пифагора, построение некоторых правильных многоугольников и многогранников, а также учение о четных и нечетных, простых и составных, о фигурных и совершенных числах, арифметических, геометрических и гармонических пропорциях и средних.

История открытия теоремы Пифагора.

Долгое время считали, что до Пифагора эта теорема не была известна. В настоящее вре-мя установлено, что эта величайшая теорема встречается в вавилонских текстах, написанных за 1200 лет до Пифагора. Открытие теоремы Пифагором окружено ореолом красивых легенд. Прокл, комментируя последнее предложение первой книги «Начал» Евклида, пишет: «Если послушать тех, кто любит повторять древние легенды, то придется сказать, что эта теорема восходит к Пифагору; рассказывают, что он в честь этого открытия принес в жертву быка». Впрочем, более щедрые сказители одного быка превратили в одну гекатомбу, а это уже целая сотня. И хотя еще Цицерон заметил, что всякое пролитие крови было чуждо уставу пифагорейского ордена, легенда эта прочно срослась с теоремой Пифагора и через две тысячи лет продолжала вызывать горячие отклики. Так, оптимист Михаил Ломоносов (1711—1765) писал: «Пифагор за изобретение одного геометрического правила Зевсу принес на жертву сто волов. Но ежели бы за найденные в нынешние времена от остроумных математиков правила по суеверной его ревности поступать, то едва бы в целом свете столько рогатого скота сыскалось». А вот ироничный Генрих Гейне (1797—1856) видел развитие той же ситуации несколько иначе: «Кто знает! Кто знает! Возможно, душа Пифагора переселилась в беднягу кандидата, который не смог доказать теорему Пифагора и провалился из-за этого на экзаменах, тогда как в его экзаменаторах обитают души тех быков, которых Пифагор, обрадованный открытием своей теоремы, принес в жертву бессмертным богам». Сегодня теорема Пифагора обнаружена в различных частных задачах и чертежах: и в египетском треугольнике в папирусе времен фараона Аменемхета первого (ок. 2000 до н.э.), и в вавилонских клинописных табличках эпохи царя Хаммурапи (XVIII в. до н.э.), и в древнеиндийском геометрическо-теологическом трактате VII —V вв. до н.э. «Сульва сутра» («Правила веревки»). В древнейшем китайском трактате «Чжоу-би суань цзинь», время создания которого точно не известно, утверждается, что в XII в. до н. э. китайцы знали свойства египетского треугольника, а к VI в. до н.э.—и общий вид теоремы. Несмотря на все это, имя Пифагора столь прочно сплавилось с теоремой Пифагора, что сейчас просто не-возможно представить, что это словосочетание распадется. То же относится и к легенде о заклании быков Пифагором. Да и вряд ли нужно препарировать историко-математическим скальпелем красивые древние предания. Сегодня принято считать, что Пифагор дал первое доказательство носящей его имя теоремы. Увы, от этого доказательства также не сохранилось никаких следов.

Читайте также:  Как применить способ рядов для измерения размеров малых тел

Способы доказательства теоремы Пифагора.

1. Простейшее доказательство

Это доказательство получается в простейшем случае равнобедренного прямоугольного треугольника. Вероятно, с него и начиналась теорема. В самом деле, достаточно посмотреть на мозаику равнобедренных прямоугольных треугольников, чтобы убедиться в справедливости теоремы. Например, для такого треугольника АВС: квадрат, построенный на гипотенузе АС, содержит 4 исходных треугольника, а квадраты, построенные на катетах, — по 2. Теорема доказана.

В течение двух тысячелетий наиболее распространенным было доказательство теоремы Пифагора, придуманное Евклидом. Данное доказательство приведено в предложении 47 первой книги «Начал». Это же доказательство рассмотрено и в учебнике А.П.Киселева «Геометрия». Чертёж, применяемый при доказательстве этой теоремы, в шутку называют «пифагоровы штаны». В течение долгого времени он считался одним из символов математической науки.

На гипотенузе и катетах прямоугольного треугольника АВС строятся соответствующие квадраты и доказывается, что прямоугольник BJLD равновелик квадрату ABFH, а прямоугольник JCEL — квадрату АСКG. Тогда сумма квадратов на катетах будет равна квадрату на гипотенузе. В самом деле, затушеванные на рисунке треугольники ABD и BFC равны по двум сторонам и углу между ними: FB = AB, BC = BD и  FBC =  ABD . Но S ABD = 1/2 S BJLD , так как у треугольника ABD и прямоугольника BJLD общее основание BD и общая высота LD. Аналогично S FBC = 1/2 S ABFH (BF-общее основание, АВ — общая высота). Отсюда, учитывая, что S ABD = S FBC , имеем S BJLD = S ABFH . Аналогично, используя равенство треугольников ВСК и АСЕ, доказывается, что S JCEL = S ACKG . Итак, S ABFH + S ACKG = S BJLD + S JCEL = S BCED , что и требовалось доказать.

Это доказательство, основанное на площади, рассматривается в учебнике «Геометрия 7-9» Л.С.Атанасяна.

Достроим треугольник до квадрата со стороной a + b .Площадь этого квадрата равна ( a + b ) 2

С другой стороны, этот квадрат составлен из четырех равных прямоугольных треугольников, площадь каждого из которых равна ab , и квадрата со стороной с, поэтому S = 4 ab + c 2 = 2 ab + c 2 . Таким образом, ( a + b ) 2 = 2 ab + c 2 , откуда c 2 = a 2 + b 2 что и требовалось доказать.

4.Через подобие треугольников.

Этот способ рассматривается в учебниках «Геометрия 7-9» А.В.Погорелова и А.П.Киселева «Геометрия».

В прямоугольном ∆ АВС (  С = 90º ) проведём высоту С D . Тогда исходный треугольник разобьётся на два треугольника, тоже являющихся прямоугольными. Полученные треугольники будут подобны друг другу и исходному треугольнику ( первый признак подобия прямоугольных треугольников) Так как у подобных треугольников сходственные стороны пропорциональны, то

АС : А D = АВ : АС = ВС : С D ; АВ : ВС = ВС : В D = АС : С D Получим верные равенства:

АС · АС = АВ · А D , ВС · ВС = АВ · В D

в · в = с · А D а · а = с ·В D

Складывая эти два верных равенства, получим

в ² + а ² = с (А D + В D )

с ² = а ² + в ² Теорема доказана.

5. Через косинус угла.

Проведем высоту С D из вершины прямого угла С.

По определению косинуса угла со s A = AD / AC = AC / AB , отсюда следует

со s B = BD / BC = BC / AB , значит AB·BD = ВС 2

Сложив полученные равенства почленно, получим: АВ 2 = АС 2 + ВС 2

6. Доказательство Дж. Гардфилда (1882 г.)

Расположим два равных прямоугольных треугольника так, чтобы катет одного из них был продолжением другого. Площадь рассматриваемой трапеции находится как произведение полусуммы оснований на высоту

C другой стороны, площадь трапеции равна сумме площадей полученных треугольников:

Приравнивая данные выражения, получаем:

7.Старейшее доказательство(содержится в одном из произведений Бхаскары).

П усть АВС D квадрат, сторона которого равна гипотенузе прямоугольного треугольника АВЕ (АВ = с, ВЕ = а,

АЕ = b ); Пусть СК ВЕ = а, DL CK , AM DL

ΔABE = ∆BCK = ∆CDL = ∆AMD,

значит KL = LM = ME = EK = a-b.

8. Доказательство Хоукинса.

Пр иведем еще одно доказательство, которое имеет вычислительный характер, однако сильно отличается от всех предыдущих. Оно опубликовано англичанином Хоукинсом в 1909 году; было ли оно известно до этого — трудно сказать.

Прямоугольный треугольник ABC с прямым углом C повернем на 90° так, чтобы он занял положение A’CB’. Продолжим гипотенузу A’В’ за точку A’ до пересечения с линией АВ в точке D. Отрезок В’D будет высотой треугольника В’АВ. Рассмотрим теперь заштрихованный четырехугольник A’АВ’В. Его можно разложить на два равнобедренных треугольника САA’ и СВВ’ (или на два треугольника A’В’А и A’В’В).

S CAA’ = b²/2
S CBB’ = a²/2
S A’AB’B = (a²+b²)/2
Треугольники A’В’А и A’В’В имеют общее основание с и высоты DA и DB, поэтому:

S A’AB’B = c·DA/2+ c·DB/2 = c (DA+DB)/2 = c²/2

Сравнивая два полученных выражения для площади, получим: a² + b² = c²

9. Доказательство Гофмана.

Треугольник ABC с прямым углом С; отрезок BF перпендикулярен СВ и равен ему, отрезок BE перпендикулярен АВ и равен ему, отрезок AD перпендикулярен АС и равен ему; точки F, С, D принадлежат одной прямой; четырехугольники ADFB и АСВЕ равновелики, так как ABF = ЕСВ; треугольники ADF и АСЕ равновелики; отнимем от обоих равновеликих четырехугольников общий для них треугольник ABC, получим

Читайте также:  Домашний способ укрепления волос

В результате нашей исследовательской работы, мы рассмотрели несколько различных способов доказательства теоремы Пифагора, которые не представлены в школьном курсе геометрии. Работа над проектом позволили нам расширить свои знания в области геометрии. К сожалению, невозможно привести все доказательства теоремы, однако хочется надеяться, что приведенные примеры убедительно свидетельствуют об огромном интересе сегодня, да и вчера, проявляемом по отношению к теореме Пифагора.

Источник

Проект по математике на тему: «Различные способы доказательств Теоремы Пифагора»

Научный проект по математике

Различные способы доказательства теоремы Пифагора

Автор: Карташова Анастасия,

учащаяся 9 «А» класса

Теорема Пифагора по праву считается самой важной в курсе геометрии и заслуживает при­стального внимания. Она являет­ся основой решения множества геометрических задач, базой для изучения теоретического и практического курса геометрии в дальнейшем. Теорема окружена богатей­шим историческим материалом, связанным с её появлением и способами доказательства. Изучение истории развития геометрии прививает любовь к данному предмету, способствует развитию познава­тельного интереса, общей культу­ры и творчества, а так же развивает навыки научно-исследовательской работы.

В результате поисковой деятельности была достигнута цель работы, заключающаяся в пополнении и обобщении знаний по доказательству теоремы Пифагора. Удалось найти и рассмотреть различные способы доказательства и углубить знания по теме, выйдя за страницы школьного учебника.

Собранный материал ещё больше убеждает в том, что теорема Пифагора является великой теоремой геометрии, имеет огромное теоретическое и практическое значение.

1. ВВЕДЕНИЕ. ИСТОРИЧЕСКАЯ СПРАВКА.

Суть истины вся в том, что нам она — навечно,

Когда хоть раз в прозрении ее увидим свет,

И теорема Пифагора через столько лет

Для нас, как для него, бесспорна, безупречна.

На радостях богам был Пифагором дан обет:

За то, что мудрости коснулся бесконечной,

Он сто быков заклал, благодаря предвечных;

Моленья и хвалы вознес он жертве вслед.

С тех пор быки, когда учуят, тужась,

Что к новой истине людей опять подводит след,

Ревут остервенело, так что слушать мочи нет,

Такой в них Пифагор вселил навеки ужас.

Быкам, бессильным новой правде противостоять,

Что остается? — Лишь глаза закрыв, реветь, дрожать.

Неизвестно, каким способом доказывал Пифагор свою теорему. Несомненно лишь то, что он открыл ее под силь­ным влиянием египетской науки. Частный случай теоре­мы Пифагора — свойства треугольника со сторонами 3, 4 и 5 — был известен строителям пирамид задолго до рожде­ния Пифагора, сам же он более 20 лет обучался у египет­ских жрецов. Сохранилась легенда, которая гласит, что, доказав свою знаменитую теорему, Пифагор принес богам в жертву быка, а по другим источникам, даже 100 быков. Это, однако, противоречит сведениям о моральных и ре­лигиозных воззрениях Пифагора. В литературных источ­никах можно прочитать, что он «запрещал даже убивать животных, а тем более ими кормиться, ибо животные имеют душу, как и мы». Пифагор питался только медом, хлебом, овощами и изредка рыбой. В связи со всем этим более правдоподобной можно считать следующую запись: «. и даже когда он открыл, что в прямоугольном треугольнике гипо­тенуза имеет соответствие с катетами, он принес в жертву быка, сделанного из пшеничного теста».

Популярность теоремы Пифагора столь велика, что ее доказательства встречаются даже в художественной литературе, например, в рассказе известного английско­го писателя Хаксли «Юный Архимед». Такое же Доказа­тельство, но для частного случая равнобедренного пря­моугольного треугольника приводится в диалоге Плато­на «Менон».

«Далеко-далеко, куда не летают даже самолеты, находится страна Геометрия. В этой необычной стране был один удиви­тельный город — город Теорем. Однажды в этот город пришла красивая девочка по имени Гипотенуза. Она попробовала снять комнату, но куда бы она ни обращалась, ей всюду отказывали. Наконец она подошла к покосившемуся домику и постучала. Ей открыл мужчина, назвавший себя Прямым Углом, и он предло­жил Гипотенузе поселиться у него. Гипотенуза осталась в доме, в котором жили Прямой Угол и два его маленьких сына по имени Катеты. С тех пор жизнь в доме Прямого Угла пошла по-ново­му. На окошке гипотенуза посадила цветы, а в палисаднике развела красные розы. Дом принял форму прямоугольного тре­угольника. Обоим катетам Гипотенуза очень понравилась и они попросили ее остаться навсегда в их доме. Ло вечерам эта друж­ная семья собирается за семейным столом. Иногда Прямой Угол играет со своими детишками в прятки. Чаще всего искать при­ходится ему, а Гипотенуза прячется так искусно, что найти ее бывает очень трудно. Однажды во время игры Прямой Угол подметил интересное свойство: если ему удается найти катеты, то отыскать Гипотенузу не составляет труда. Так Прямой Угол пользуется этой закономерностью, надо сказать, очень успешно. На свойстве этого прямоугольного треугольника и основана тео­рема Пифагора.»

(Из книги А. Окунева «Спасибо за урок, дети»).

Шутливая формулировка теоремы:

Если дан нам треугольник

И притом с прямым углом,

То квадрат гипотенузы

Мы всегда легко найдем:

Катеты в квадрат возводим,

Сумму степеней находим –

И таким простым путем

К результату мы придем.

Изучая алгебру и начала анализа и геометрию в 10 классе, я убедилась в том, что кроме рассмотренного в 8 классе способа доказательства теоремы Пифагора существуют и другие способы доказательства. Представляю их на ваше обозрение.

Теорема. В прямоугольном треугольнике квадрат

гипотенузы равен сумме квадратов катетов.

Пользуясь свойствами площадей многоугольников, установим замечательное соотношение между гипотенузой и катетами прямоугольного треугольника.

Читайте также:  Способы вступления части с

Рассмотрим прямоугольный треугольник с катетами а, в и гипотенузой с (рис.1, а).

Докажем, что с²=а²+в² .

Доказательство.

Достроим треугольник до квадрата со стороной а + в так, как показано на рис. 1, б. Площадь S этого квадрата равна (а + в) ² . С другой стороны, этот квадрат составлен из четырех равных прямоугольных треугольников, площадь каждого из которых равна ½ ав , и квадрата со стороной с , поэтому S = 4 * ½ ав + с ² =2ав + с ².

2 СПОСОБ.

После изучения темы «Подобные треугольники» я выяснила, что можно применить подобие треугольников к доказательству теоремы Пифагора. А именно, я воспользовалась утверждением о том, что катет прямоугольного треугольника есть среднее пропорциональное для гипотенузы и отрезка гипотенузы, заключённого между катетом и высотой, проведённой из вершины прямого угла.

Рассмотрим прямоугольный треугольник с прямым углом С, С D – высота (рис. 2). Докажем, что АС ² +СВ ² = АВ ² .

На основании утверждения о катете прямоугольного треугольника:

АС = , СВ = .

Возведем в квадрат и сложим полученные равенства:

АС ² = АВ * А D , СВ ² = АВ * D В;

АС ² + СВ ² = АВ * ( А D + D В), где А D + DB = AB , тогда

АС ² + СВ ² = АВ * АВ,

К доказательству теоремы Пифагора можно применить определение косинуса острого угла прямоугольного треугольника. Рассмотрим рис. 3.

Пусть АВС – данный прямоугольный треугольник с прямым углом С. Проведем высоту С D из вершины прямого угла С.

По определению косинуса угла:

cos А = А D /АС = АС/АВ. Отсюда АВ * А D = АС ²

cos В = В D /ВС = ВС/АВ.

Отсюда АВ * В D = ВС ² .

Складывая полученные равенства почленно и замечая, что А D + D В = АВ, получим:

Изучив тему «Соотношения между сторонами и углами прямоугольного треугольника», я думаю, что теорему Пифагора можно доказать ещё одним способом.

Рассмотрим прямоугольный треугольник с катетами а, в и гипотенузой с. (рис. 4).

sin В= в/с ; cos В= a /с, то, возведя в квадрат полученные равенства, получим:

Сложив их, получим:

1= (в²+ а²) / с², следовательно,

Данное доказательство основано на разрезании квадратов, построенных на катетах (рис. 5), и укладывании полученных частей на квадрате, по­строенном на гипотенузе.

Для доказательства на катете ВС строим BCD ABC (рис.6 ). Мы знаем, что пло­щади подобных фигур отно­сятся как квадраты их сход­ственных линейных размеров:

Вычитая из первого равенства второе, получим

,

,

с 2 = а 2 + b 2 .

AB С, = 90°, ВС = а, АС= b , АВ = с.

Пусть катет b а. Продолжим отре­зок СВ за точку В и построим треугольник BMD так, что­бы точки М и А лежали по одну сторону от прямой CD и, кроме того, BD = b , BDM = 90°, DM = a , тогда BMD = ABC по двум сторонам и углу между ними. Точки А и М соединим отрезками AM . Имеем MD CD и AC CD , значит, прямая АС параллельна прямой MD . Так как MD CD и AM не параллельны. Следова­тельно, AMDC прямоугольная трапеция.

В прямоугольных треугольниках ABC и BMD 1 + 2 = 90° и 3 + 4 = 90°, но так как = =, то 3 + 2 = 90°; тогда АВМ =180° — 90° = 90°. Оказа­лось, что трапеция AMDC разбита на три неперекрываю­щихся прямоугольных треугольника, тогда по аксиомам площадей

,

( a + b )( a + b )

Разделив все члены неравенства на , получим

а b + с 2 + а b = (а + b ) , 2 ab + с 2 = а 2 + b + b 2 ,

Данный способ основывается на гипотенузе и кате­тах прямоугольного тре­угольника ABC . Он строит соответствующие квадра­ты и доказывает, что квадрат, построенный на гипотенузе, равновелик сумме квадратов, постро­енных на катетах (рис. 8).

1) DBC = FBA = 90°;

DBC + ABC = FBA + ABC , значит, FBC = DBA .

Таким образом, FBC = ABD (по двум сторонам и углу между ними).

2) , где AL DE , так как BD — общее основание, DL общая высота.

3) , так как FB –снование, АВ — общая высота.

4)

5) Аналогично можно доказать, что

6) Складывая почленно, получаем:

, ВС 2 = АВ 2 + АС 2 . Доказательство закончено.

1) Пусть ABDE — квадрат (рис. 9), сторона которого рав­на гипотенузе прямоугольно­го треугольника ABC (АВ = с, ВС = а,АС = b ).

2) Пусть DK BC и DK = ВС, так как 1 + 2 = 90° (как острые углы прямоугольно­го треугольника), 3 + 2 = 90° (как угол квадрата), АВ = BD (стороны квадрата).

Значит, ABC = BDK (по гипотенузе и острому углу).

3) Пусть EL DK, AM EL. Можно легко доказать, что ABC = BDK =DEL = ЕАМ (с катетами а и b ). Тогда КС = СМ = ML = LK = а — b .

4) S KB = 4S + S KLMC = 2ab + (a — b), с 2 = 2ab + a 2 — 2ab + b 2 , c 2 = a 2 + b 2 .

Доказательство может быть проведено на фигуре, в шутке называемой «Пифагоровы штаны» (рис. 10). Идея его со­стоит в преобразовании квад­ратов, построенных на кате­тах, в равновеликие треуголь­ники, составляющие вместе квадрат гипотенузы.

ABC сдвигаем, как пока­зано стрелкой, и он занимает положение KDN . Оставша­яся часть фигуры AKDCB рав­новелика площади квадрата AKDC это параллелограмм AKNB .

Сделана модель параллелограмма AKNB . Параллелограмм перекладываем так, как зарисовано в содержании работы. Чтобы показать преобразование парал­лелограмма в равновеликий треугольник, на глазах уча­щихся отрезаем на модели треугольник и перекладываем его вниз. Таким образом, площадь квадрата AKDC получилась равна площади прямоугольника. Аналогично преоб­разуем площадь квадрата в площадь прямоугольника.

Произведем преобразование для квадрата, построенно­го на катете а (рис. 11,а):

а) квадрат преобразуется в равновеликий параллелог­рамм (рис. 11,6):

б) параллелограмм поворачивается на четверть оборо­та (рис. 12):

в) параллелограмм преобразуется в равновеликий пря­моугольник (рис. 13):

Источник

Оцените статью
Разные способы