Способы добычи газовый конденсат

Газовый конденсат, свойства, добыча, применение

Газовый конденсат, свойства, добыча, применение.

Газовый конденсат – это полезное ископаемое, жидкая смесь тяжелых углеводородов, выделяемых из природного газа при их добыче на газоконденсатных месторождениях либо из попутного нефтяного газа при добыче нефти из нефтяных месторождений.

Газовый конденсат:

Газовый конденсат – это полезное ископаемое, жидкая смесь тяжелых углеводородов, выделяемых из природного газа при их добыче на газоконденсатных месторождениях либо из попутного нефтяного газа при добыче нефти из нефтяных месторождений.

Внешне, как правило, газовый конденсат представляет собой прозрачную бесцветную жидкость. Из-за этого он получил название «белая нефть». Иногда газовый конденсат приобретает слабую окраску от соломенно-жёлтого до жёлто-коричневого цвета, что обусловлено наличием примесей нефти, тяжелых углеводородов .

Газовый конденсат всегда присутствует в месторождениях природного газа . Как известно, природный газ представляет собой смесь углеводородных и неуглеводородных компонентов. Причем первые представлены метаном СН4 и его гомологами: этаном С2Н6, пропаном С3Н8, бутаном С4Н10, пентаном С5Н12, гексаном С6Н14, гептаном С7Н16, октаном С8Н18, нонаном С9Н20, деканом С10Н22 и т.д. вплоть до доказана С22Н46. Газовый конденсат представляет собой смесь тяжелых углеводородов, начиная от пентана С5Н12 и выше.

Пентан имеет три изомера: нормальный пентан, изопентан и неопентан. Два изомера пентана (нормальный пентан и изопентан) в нормальных условиях легколетучие подвижные жидкости . Неопентан же – газ. Последующие углеводороды (начиная от гексана С6Н14 и выше) в нормальных условиях все являются жидкостями.

В газовых и газоконденсатных залежах тяжелые углеводороды существуют в газообразном состоянии. Это обусловлено высоким давлением (от 10 до 60 МПа) и высокой температурой в газовых пластах. После бурения скважины в пласте происходит падение температуры и давления. Если снижение давления и температуры происходит ниже точки росы тяжелые углеводороды (от С5Н12 и выше) конденсируются.

Концентрация в добываемом природном газе газового конденсата может достигать от 5 г/ м³ до 1000 г/ м³. Все зависит от качества природного газа, от коэффициента его сухости. Сухой природный газ содержит очень малое количество примесей газового конденсата, сырой (жирный) – больше – свыше 15 %.

Также на концентрацию газового конденсата в природном газе влияют показатели температуры и давления до начала конденсации. Чем они больше, тем больше углеводородов может быть растворено в добываемом природном газе.

В пласте могут находиться т.н. «нефтяные оторочки», т.е. части залежи, содержащие нефть, газ и конденсат. Нефтяные оторочки не только увеличивают концентрацию конденсата в добываемом газе, но и добавляют в состав газового конденсата высокомолекулярные жидкие компоненты нефти .

Отличие газового конденсата от нефти – отсутствие в нем смолистых веществ и асфальтенов. Можно сказать, что газовый конденсат – это по сути легкая нефть.

Химический состав газового конденсата. Стабильный газовый конденсат. Нестабильный газовый конденсат:

Как и природный газ газовый конденсат представляет собой смесь углеводородов . В его состав входят некоторые бензино-керосиновые фракции и, реже, более высокомолекулярные жидкие компоненты нефти. Иногда встречаются ароматические или нафтеновые углеводороды.

Различают стабильный и нестабильный газовый конденсат.

Нестабильный газовый конденсат включает в себя также легкие фракции углеводородов, начиная от метана CH4 и заканчивая бутаном C4H10. Эти газы растворены в газовом конденсате.

Если нестабильный газовый конденсат подвергнуть очистке, сепарации и удалить из него эти легкие углеводороды (метан СН4, этан С2Н6, пропан С3Н8 и бутан С4Н10), то получается стабильный газовый конденсат.

Таким образом, стабильный газовый конденсат содержит пентан С5Н12, гексан С6Н14, гептан С7Н16, октан С8Н18, нонан С9Н20, декан С10Н22 и т.д. вплоть до доказана С22Н46, а также бензино-керосиновые фракции, газойль, более высокомолекулярные жидкие компоненты нефти, ароматические или нафтеновые углеводороды.

Как правило, бензиновые компоненты составляют более половины газового конденсата. Если пласт располагается на большой глубине, то в его составе преобладают керосиновые компоненты и газойль.

Читайте также:  Подоконник способ образования приставочно суффиксальный способ

Требования ГОСТ к составу газового конденсата:

Газовый конденсат стабильный подразделяется на группы 1 и 2 по содержанию хлористых солей, сернистых соединений КГС в соответствии с таблицей, приведенной ниже.

ГОСТом Р 54389-2011 «Конденсат газовый стабильный. Технические условия» установлены следующие требования к стабильному газовому конденсату:

Не нормируют. Определение обязательно

Наименование показателя: Значение для группы:
1 2
Давление насыщенных паров, кПа (мм рт.ст.), не более* 66,7 (500)
Массовая доля воды, %, не более 0,5
Массовая доля механических примесей, %, не более 0,05
Массовая концентрация хлористых солей, мг/дм 3 , не более 100 300
Массовая доля серы, %*** Не нормируют. Определение по требованию потребителя
Массовая доля сероводорода, млн -1 (ppm), не более*** 20 100
Массовая доля метил- и этилмеркаптанов в сумме, млн -1 (ppm), не более*** (****) 40 100
Плотность:

при 20 °С, кг/м 3 ;

при 15 °С, кг/м 3 Не нормируют. Определение по требованию потребителя
Выход фракций, % до температуры, °С:****
100
200
300
360
Не нормируют. Определение обязательно
Массовая доля парафина, % Не нормируют. Определение по требованию потребителя
Массовая доля хлорорганических соединений, млн -1 (ppm) Не нормируют. Определение по требованию потребителя

* По согласованию с потребителями допускается выпуск стабильный газовый конденсат давлением насыщенных паров не более 93,3 (700) кПа (мм рт.ст.).

** Если хотя бы по одному из показателей стабильный газовый конденсат относят к группе 2, а по другим – к группе 1, то стабильный газовый конденсат признают соответствующим группе 2.

*** Данные показатели определяют по требованию потребителя только для конденсатов с содержанием сернистых соединений (в пересчете на серу) более 0,01% массовых.

****Для организаций, перерабатывающих сернистое сырье и введенных в эксплуатацию до 1990 г., допускается по согласованию с потребителями и транспортными компаниями превышение значения по показателю массовой доли метил- и этилмеркаптанов для стабильного газового конденсата группы 2 до 300 млн -1 (ppm) и по показателю выход фракций для стабильного газового конденсата группы 2 до 3000 млн -1 (ppm).

Источник

Способы добычи газовый конденсат

01.04.2016 23:41 — дата обновления страницы

Основы нефтяной и газовой промышленности

e-mail:
office@matrixplus.ru
tender@matrixplus.ru

icq:
613603564

skype:
matrixplus2012

телефон
+79173107414
+79173107418

г. С аратов

Полезные ссылки

поддержка проекта:
разместите на своей странице нашу кнопку! И мы разместим на нашей странице Вашу кнопку или ссылку. Заявку прислать на e-mail

Liveinternet

Методы добычи газа и газового конденсата

В зависимости от состава продукции, получаемой из газовых скважин, газовые месторождения разделяют на две группы: чисто газовые месторождения и газоконденсатные месторождения. На газовых месторождениях из скважин поступает чистый газ (именуемый в дальнейшем природный газ) вместе с небольшим количеством влаги и твердыми частицами механических примесей. Природный газ состоит в основном из легкого углеводорода — метана (94-98 %), не конденсирующегося при изменении пластового давления. Чисто газовые меторождения встречаются редко. Примерами чисто газовых месторождений являются Северо-Ставропольское, Уренгойское и Медвежье (всеноманских отложениях). В состав газоконденсатных месторождений входит не только легкий углеводород парафинового ряда, метан, но и более тяжелые углеводороды этого ряда (от пентана и далее). При этом содержание метана в газе снижается до 70-90 % по объему. Более тяжелые, чем метан, углеводороды при изменении пластового давления переходят в жидкое состояние (конденсируются), образуя так называемый конденсат. Вместе с газом и конденсатом с забоя скважин поступает вода и твердые частицы механических примесей. На ряде отечественных (Оренбургское, Астраханское газоконденсатные месторождения) и зарубежных (например, Лакское во Франции) месторождений газы содержат достаточно большое количество сероводорода и углекислого газа (до 25 % по объему). Такие газы называются кислыми. Кроме того, на ряде месторождений вместе с газом из скважин поступает достаточно большое количество ценных инертных газов (в основном гелия).

Основной метод добычи газа и газового конденсата — фонтанный, так как газ в продуктивном пласте обладает достаточно большой энергией, обеспечивающей его перемещение по капиллярным каналам пласта к забоям газовых скважин. Как и при фонтанном способе добычи нефти, газ поступает к устью скважины по колонне фонтанных труб.

Следует отметить, что добычу газа ведут из одного продуктивного пласта (однопластовые месторождения) и из двух и более пластов (многопластовые месторождения).

Для обеспечения нормальных условий эксплуатации газовых скважин и обеспечения оптимального дебита этих скважин большое значение имеет выбор оптимального диаметра фонтанных труб. Оптимальный диаметр фонтанных труб определяют исходя из двух критериев: максимального выноса с забоя скважины на поверхность твердых и жидких примесей газа и минимума потерь давления в трубах при заданном дебите газовой скважины. Вынос твердых частиц с забоя скважины с потоком газа обеспечивается в том случае, если скорость восх0дяидего потока в скважине превысит критическую скорость, при которой твердые частицы еще будут находиться во взвешенном состоянии в потоке газа.

Оборудование устья и забоя газовых скважин, а также конструк-циЯ газовой скважины практически аналогичны описанным нефтяным скважинам.

Эксплуатация газовых скважин связана с необходимостью обеспечения заданного дебита газа и газового конденсата (на газоконденсатных месторождениях). Решение этой основной задачи эксплуатации газовых скважин во многом зависит от состояния призабойной зоны скважины, степени ее обводненности, наличия в составе газа и конденсата агрессивных компонентов (сероводорода, углекислого газа) и других факторов, среди которых важное значение имеет число одновременно эксплуатируемых продуктивных пластов в одной скважине.

При значительных пескопроявлениях продуктивного пласта, т.е. при выходе из призабойной зоны пласта большого количества песка, на забое скважины образуются малопроницаемые для газа песчаные пробки, существенно снижающие дебит скважины. При равенстве про-ницаемостей пласта и песчаной пробки дебит скважины составляет всего 5 % дебита газа незасоренной скважины. Даже если проницаемость песчаной пробки будет в 10 раз больше, чем у продуктивного пласта, то и в этом случае дебит скважины не превысит 10 % дебита незасоренной скважины. Основные задачи, решаемые при эксплуатации газовых скважин с пескопроявлениями на забое: с одной стороны, предотвращение образования песчаных пробок за счет ограничения дебита скважин; с другой стороны, выбор такого дебита скважины, при котором обеспечивался бы вынос частиц песка, проникающих на забой, на поверхность, к устью скважины; наконец, если снижение дебита скважины для предотвращения образования песчаных пробок окажется намного меньше потенциального дебита скважины, то необходимо решать вопрос о защите призабойной зоны скважины от попадания песка и образования песчаных пробок с сохранением высокого дебита скважины. В последнем случае для защиты забоя скважины от попадания песка устанавливают различные фильтры: с круглыми отверстиями, щелевые и проволочные. Первые два вида фильтров представляют собой отрезки труб с круглыми отверстиями диаметром 1,5-2 мм или с продолговатыми отверстиями типа щелей. Проволочные фильтры — это отрезки труб с крупными круглыми отверстиями, обмотанные проволокой с малым шагом навивки. Применяют также закрепление слабых пород призабойной зоны пласта для предотвращения их разрушения и засорения забоя скважины. Для этого в скважину закачивают водные суспензии различных смол (фенольно-формальдегидных, кар-бамидных и др.). При этом в пласте смола отделяется от воды и цементирует частицы песка, а вода заполняет капиллярные каналы и удаляет ся из них при освоении скважины. Для удаления песчаных пробок при меняют также промывку скважины.

При эксплуатации газовых скважин в условиях обводнения призабойной зоны следует учитывать такие отрицательные последствия, как снижение дебита скважины, сильное обводнение газа, а значит, и большой объем его сепарации на промыслах для отделения воды, опасность образования большого объема кристаллогидратов и др. В связи с этим необходимо постоянное удаление воды с забойной зоны скважины. В процессе эксплуатации обводненных газовых скважин приме няют периодическое и непрерывное удаление влаги из скважины. К периодическим методам удаления влаги относят: остановку скважины (периодическую) для обратного поглощения жидкости пластом; продувку скважины в атмосферу или через сифонные трубки; вспенивание жидкости в скважине за счет введения в скважину пенообразующих веществ (пенообразователей). К непрерывным методам удаления влаги из скважины относят: эксплуатацию скважин при скоростях выходящего газа, обеспечивающих вынос воды с забоя; непрерывную продувку скважин через сифонные или фонтанные трубы; применение плунжерного лифта; откачку жидкости скважинными насосами; непрерывное вспенивание жидкости в скважине. Выбор того или иного метода удаления влаги из газовых скважин зависит от большого, числа факторов, к которым относят геолого-промысловую характеристику данного месторождения, конструкцию скважины, объемы воды, причины ее попадания в скважину, стадию разработки газового месторождения. Так, например, при малых дебитах газа из скважины достаточно применение одного из периодических методов удаления влаги, а при больших дебитах — одного из непрерывных методов. Наиболее широко применяют на практике относительно недорогой и достаточно эффективный метод введения в скважину веществ — пенообразователей. В качестве пенообразователей широко используют поверхностно-активные вещества (ПАВ) — сильные пенообразователи — сульфанол, синтетические моющие порошки («Кристалл», «Луч») и др. Вспененная жидкость имеет значительно меньшую плотность и легко выносится на поверхность с потоком газа.

Если газовая скважина эксплуатируется на месторождениях с кислыми газами, содержащими большое количество сероводорода и углекислого газа, то главное — это защита обсадных и фонтанных труб и оборудования от агрессивного действия сероводорода и углекислого газа. Для защиты труб и оборудования от коррозии разработаны различные методы: ингибирование с помощью веществ — ингибиторов коррозии; применение для оборудования легированных коррозионно-стойких сталей и сплавов; применение коррозионно-стойких неметаллических и металлических покрытий; использование электрохимических методов защиты от коррозии; использование специальных технологических режимов эксплуатации оборудования.

Наибольшее распространение в практике эксплуатации газовых скважин при добыче кислых газов для защиты от коррозии нашли ингибиторы, т.е. вещества, при введении которых в коррозионную среду скорость коррозии значительно снижается или коррозия полностью прекращается. В практике эксплуатации газовых скважин применяют различные схемы ввода ингибиторов: инжекцию ингибиторов в межтрубное пространство; закачку ингибиторов непосредственно в пласт, введение ингибиторов в твердом состоянии. В межтрубное пространство ингибитор инжектируют с помощью специальной ингибиторной установки. Ингибитор в строго дозированном количестве под действием силы тяжести постоянно подается в межтрубное пространство, поступает на забой скважины и потоком газа по фонтанным трубам выносится на поверхность. Наличие в потоке газа с агрессивными компонентами ингибитора позволяет снизить скорость коррозии и заметно ослабить ее опасные последствия. Для борьбы с сероводородной коррозией эффективно вводить ингибиторы непосредственно в пласт. Ингибиторы в пласты закачивают с помощью цементировочных агрегатов под давлением один раз за время от 3 до 12 мес. Однако при закачке ингибиторов непосредственно в пласты необходимо принимать меры, предотвращающие загрязнение капиллярных каналов пласта.

Легированные коррозионно-стойкие стали используют для изготовления внутрискважинного оборудования (пакеры, циркуляционные и предохранительные клапаны и др.). В отдельных случаях для фонтанных и обсадных труб применяют алюминиевые сплавы — дюралюмины Д16Т, Д16АТ, хромистые нержавеющие стали марок 2X13, 1X13, Х13, Х9М, Х8.

При протекторной защите фонтанных и обсадных труб последние контактируют с пластинами из более электроотрицательных металлов (магния, цинка). В этом случае коррозионному разрушению подвергаются не стальные трубы, а более отрицательные металлы анода. Если для защиты труб и оборудования применяют катодную защиту, то от источника постоянного тока (катодной станции на трубы или оборудование подают отрицательный потенциал, а на рядом расположенный отрезок трубы (анод) — положительный потенциал, что приводит к разрушению анода и к сохранению без разрушения катода, т.е. металла труб или оборудования.

В практике эксплуатации газовых и газоконденсатных месторождений, как уже было сказано, встречаются однопластовые и многопластовые месторождения. Эксплуатацию многопластовых газовых или газоконденсатных месторождений можно вести двумя способами. При первом способе для извлечения газа из продуктивных пластов на каждый пласт пробуривают свои скважины, что приводит к значительному увеличению числа скважин и повышению капитальных затрат для разработки такого месторождения. При втором способе извлечение газа и газового конденсата из двух или более пластов выполняют одной скважиной. При этом значительно сокращается число скважин, а следовательно, и капитальные затраты и увеличивается дебит каждой скважины. При эксплуатации многопластовых месторождений одной скважиной наиболее часто применяют раздельный отбор газа из каждого пласта с использованием различных схем. Обязательным для любой из схем является применение пакеров. Пакер — это разделитель или разобщитель пластов. Уплотнение в пакере создают за счет применения уплотнительных колец из резины или фторопласта. Пакер закрепляют на резьбе между фонтанными трубами и вместе с колонной фонтанных труб опускают в скважину, оснащенную обсадными трубами. При раздельной эксплуатации применяют как одну, так и несколько колонн фонтанных труб, соответствующих числу пластов. Возможна эксплуатация нескольких пластов одной скважиной и без разделения пластов, когда газ из всех пластов поступает в скважину, перемешивается и по фонтанным трубам выходит на поверхность. Однако в этом случае невозможно контролировать и регулировать разработку отдельных пластов.

широкого применения

для дезинфекции на объектах железнодорожного транспорта, пищевой промышленности, ЛПУ, ветеринарного надзора

Моющие средства

для железнодорожного транспорта, сертифицированные ВНИИЖТ- «Фаворит К» и «Фаворит Щ», внутренняя и наружная замывка вагонов.

Источник

Читайте также:  Способы передачи персональных данных третьим лицам
Оцените статью
Разные способы