Дробление
ЭМБРИОНАЛЬНОЕ РАЗВИТИЕ
Сущность стадии дробления. Дробление — это ряд последовательных митотических делений зиготы и далее бластомеров, заканчивающихся образованием многоклеточного зародыша — бластулы. Первое деление дробления начинается после объединения наследственного материала пронуклеусов и образования общей метафазной пластинки. Возникающие при дроблении клетки называют бластомерами (от греч. бласте—росток, зачаток). Особенностью митотических делений дробления является то, что с каждым делением клетки становятся все мельче и мельче, пока не достигнут обычного для соматических клеток соотношения объемов ядра и цитоплазмы. У морского ежа, например, для этого требуется шесть делений и зародыш состоит из 64 клеток. Между очередными делениями не происходит роста клеток, но обязательно синтезируется ДНК.
Все предшественники ДНК и необходимые ферменты накоплены в процессе овогенеза. В результате митотические циклы укорочены и деления следуют друг за другом значительно быстрее, чем в обычных соматических клетках. Сначала бластомеры прилегают друг к другу, образуя скопление клеток, называемое морулой. Затем между клетками образуется полость — бластоцель, заполненная жидкостью. Клетки оттесняются к периферии, образуя стенку бластулы — бластодерму. Общий размер зародыша к концу дробления на стадии бластулы не превышает размера зиготы.
Главным результатом периода дробления является превращение зиготы в многоклеточный односменный зародыш.
Морфология дробления. Как правило, бластомеры располагаются в строгом порядке друг относительно друга и полярной оси яйца. Порядок, или способ, дробления зависит от количества, плотности и характера распределения желтка в яйце. По правилам Сакса — Гертвига клеточное ядро стремится расположиться в центре свободной от желтка цитоплазмы, а веретено клеточного деления — в направлении наибольшей протяженности этой зоны.
В олиго- и мезолецитальных яйцах дробление полное, или голобластическое. Такой тип дробления встречается у миног, некоторых рыб, всех амфибий, а также у сумчатых и плацентарных млекопитающих. При полном дроблении плоскость первого деления соответствует плоскости двусторонней симметрии. Плоскость второго деления проходит перпендикулярно плоскости первого. Обе борозды первых двух делений меридианные, т.е. начинаются на анимальном полюсе и распространяются к вегетативному полюсу. Яйцевая клетка оказывается разделенной на четыре более или менее равных по размеру бластомера. Плоскость третьего деления проходит перпендикулярно первым двум в широтном направлении. После этого в мезолецитальных яйцах на стадии восьми бластомеров проявляется неравномерность дробления. На анимальном полюсе четыре более мелких бластомера — микромеры, на вегетативном — четыре более крупных — макромеры. Затем деление опять идет в меридианных плоскостях, а потом опять в широтных.
В полилецитальных яйцеклетках костистых рыб, пресмыкающихся, птиц, а также однопроходных млекопитающих дробление частичное, или мероб-ластическое, т.е. охватывает только свободную от желтка цитоплазму. Она располагается в виде тонкого диска на анимальном полюсе, поэтому такой тип дробления называют дискоидальным.
При характеристике типа дробления учитывают также взаимное расположение и скорость деления бластомеров. Если бластомеры располагаются рядами друг над другом по радиусам, дробление называют радиальным. Оно типично для хордовых и иглокожих. В природе встречаются и другие варианты пространственного расположения бластомеров при дроблении, что определяет такие его типы, как спиральное у моллюсков, билатеральное у аскариды, анархичное у медузы.
Замечена зависимость между распределением желтка и степенью синхронности деления анимальных и вегетативных бластомеров. В олиголецитальных яйцах иглокожих дробление почти синхронное, в мезолецитальных яйцевых клетках синхронность нарушена после третьего деления, так как вегетативные бластомеры из-за большого количества желтка делятся медленнее. У форм с частичным дроблением деления с самого начала асинхронны и бластомеры, занимающие центральное положение, делятся быстрее.
Рис. 7.2. Дробление у хордовых животных с разным типом яйцеклетки.
А — ланцетник; Б — лягушка; В — птица; Г — млекопитающее:
I—два бластомера, II—четыре бластомера, III—восемь бластомеров, IV—морула, V—бластула;
1—борозды дробления, 2—бластомеры, 3— бластодерма, 4—бластоиель, 5—эпибласт, 6— гипобласт, 7—эмбриобласт, 8—трофобласт; размеры зародышей на рисунке не отражают истинных соотношений размеров
Рис. 7.2. Продолжение
К концу дробления образуется бластула. Тип бластулы зависит от типа дробления, а значит, от типа яйцеклетки. Некоторые типы дробления и бластул представлены на рис. 7.2 и схеме 7.1. Более подробное описание дробления у млекопитающих и человека см. разд. 7.6.1.
Особенности молекулярно-генетических и биохимических процессов при дроблении. Как было отмечено выше, митотические циклы в периоде дробления сильно укорочены, особенно в самом начале.
Например, весь цикл деления в яйцах морского ежа длится 30—40 мин при продолжительности S-фазы всего 15 мин. gi- и 02-периоды практически отсутствуют, так как в цитоплазме яйцевой клетки создан необходимый запас всех веществ, и тем больший, чем она крупнее. Перед каждым делением происходит синтез ДНК и гистонов.
Скорость продвижения репликационной вилки по ДНК в ходе дробления обычная. Вместе с тем в ДНК бластомеров наблюдается больше точек инициации, чем в соматических клетках. Синтез ДНК идет во всех репликонах одновременно, синхронно. Поэтому время репликации ДНК в ядре совпадает с временем удвоения одного, притом укороченного, репликона. Показано, что при удалении из зиготы ядра дробление происходит и зародыш доходит в своем развитии почти до стадии бластулы. Дальнейшее развитие прекращается.
В начале дробления другие виды ядерной активности, например транскрипция, практически отсутствуют. В разных типах яиц транскрипция генов и синтез РНК начинаются на разных стадиях. В тех случаях, когда в цитоплазме много различных веществ, как, например, у земноводных, транскрипция активируется не сразу. Синтез РНК у них начинается на стадии ранней бластулы. Напротив, у млекопитающих синтез РНК уже начинается на стадии двух бластомеров.
В периоде дробления образуются РНК и белки, аналогичные синтезируемым в процессе овогенеза. В основном это гистоны, белки клеточных мембран и ферменты, необходимые для деления клеток. Названные белки используются сразу же наравне с белками, запасенными ранее в цитоплазме яйцеклеток. Наряду с этим в период дробления возможен синтез белков, которых не было ранее. В пользу этого свидетельствуют данные о наличии региональных различий в синтезе РНК и белков между бластомерами. Иногда эти РНК и белки начинают действовать на более поздних стадиях.
Важную роль в дроблении играет деление цитоплазмы — цитотомия. Она имеет особое морфогенетическое значение, так как определяет тип дробления. В процессе цитотомии сначала образуется перетяжка с помощью сократимого кольца из микрофиламентов. Сборка этого кольца проходит под непосредственным влиянием полюсов митотического веретена. После цитотомии бластомеры олиголецитальных яиц остаются связанными между собой лишь тоненькими мостиками. Именно в это время их легче всего разделить. Это происходит потому, что цитотомия ведет к уменьшению зоны контакта между клетками из-за ограниченной площади поверхности мембран
Сразу после цитотомии начинается синтез новых участков клеточной поверхности, зона контакта увеличивается и бластомеры начинают плотно соприкасаться. Борозды дробления проходят по границам между отдельными участками овоплазмы, отражающим явление овоплазматической сегрегации. Поэтому цитоплазма разных бластомеров различается по химическому составу.
Источник
Лекция 7 Дробление
ЛЕКЦИЯ 7 Дробление
Общая характеристика процесса дробления.
1.Особенности митотических циклов в процессе дробления.
2. Правила дробления Гертвига-Сакса.
3. Полное (голобластическое), частичное (меробластическое) дробление.
4. Типы голобластического дробления.
5. Типы меробластического дробления.
6. Типы бластул животных с разным способом дробления, их строение и особенности.
Общая характеристика процесса дробления. Особенности митотических циклов в процессе дробления. Молекулярная природа факторов, определяющих укороченный клеточный цикл. Пространственная организация дробления. Правила Гертвига-Сакса. Полное (голобластическое), частичное (меробластическое) дробление. Основные типы голобластического дробления (радиальное, спиральное, билатеральное, анархическое) и их особенности. Основные типы меробластического дробления (дискоидальное, поверхностное) и их особенности.
Основные типы бластул у животных с разным способом дробления, их строение и особенности.
Биологическое значение и определения
Оплодотворение играет чрезвычайно важную роль в развитии, но оно лишь только первая его ступень. Зигота с ее новым генетическим потенциалом и новым распределением цитоплазмы приступает к созданию многоклеточного организма. У всех известных животных это начинается с процесса дробления.
Дробление — серия митотических делений, в результате которых огромный объем цитоплазмы яйца разделяется на многочисленные содержащие ядро клетки меньшего размера. Такие клетки называются бластомерами.
После объединения хромосомных наборов, являющегося следствием оплодотворения, без всякого перерыва начинается митотическое деление зиготы. За этим первым делением следует серия следующих делений ядер и цитоплазмы, общие свойства которых таковы:
- разделившиеся клетки зародыша не растут, т. е. в промежутке между делениями масса их цитоплазмы не увеличивается — в результате суммарный объем и масса всех возникших клеток не превышает объема и массы яйцеклетки во время оплодотворения; количество ДНК в ядре удваивается после каждого деления, как и при обычном митозе, так что все клетки сохраняют диплоидность.
Перетяжки, разделяющие дробящуюся яйцеклетку на все более мелкие клетки (бластомеры), называются бороздами дробления.
Дробление — это многократные митотические деления зиготы, в результате которых зародыш становится многоклеточным, не меняя при этом существенно своего объема.
Образование многоклеточности — первая и основная биологическая роль дробления. Вторая роль состоит в восстановлении ядерно-плазматического отношения, которое падает в ходе стадии большого роста ооцита.
Видовые особенности процесса дробления определяются двумя основными параметрами:
- количеством и распределением желточных белков в цитоплазме (желток подавляет дробление);
• присутствием в цитоплазме факторов, которые влияют на ориентацию митотического веретена и время его образования.
Дробление начинается вскоре после оплодотворения и заканчивается, когда у зародыша достигается новое равновесие между ядром и цитоплазмой. Дробление — строго координированный процесс, находящийся под генетическим контролем.
Отличие дробления от деления соматических клеток
В большинстве других случаев клеточной пролиферации в период между митозами происходит рост клеток. Клетка увеличивается в объеме почти вдвое и затем делится. Такой рост приводит к увеличению общего объема клеток при сохранении относительно постоянного отношения объема ядра к объему цитоплазмы.
В период дробления зиготы объем цитоплазмы не возрастает: огромная масса цитоплазмы зиготы разделяется на все более мелкие клетки. Это деление цитоплазмы яйца, не сопровождающееся ростом, осуществляется путем выпадения G1-периода в интерфазе, тогда как митозы следуют друг за другом с большой скоростью.
Темпы увеличения числа клеток в период дробления намного выше, чем на стадии гаструляции. Одним из последствий высокой интенсивности делений в процессе дробления является постепенное уменьшение отношения объема цитоплазмы к объему ядра. Изменение скорости, с которой происходит снижение отношения объема цитоплазмы к объему ядра, у многих типов зародышей является решающим фактором, определяющим время активации некоторых генов.
От митотического деления соматических клеток дробление отличается тем, что полученные в результате дробления клетки не растут, а поэтому с каждым следующим делением становятся всё более мелкими, при этом увеличивается только их количество, а зародыш в целом не растет. Получающиеся при дроблении клетки малодифференцированны и сравнительно однородны.
Период синхронных делений дробления характеризуется укороченными клеточными циклами, из которых фактически выпадает пресинтетический, или G1-период, а также постсинтетический, или G2-период (рис. 19).
Глубокие изменения в клеточном метаболизме частично связаны с циклическим чередованием окисленной и восстановленной конформации белков, обусловленной S-S и S-H группами. Свободные сульфгидрильные группы в наибольшем количестве имеются в делящихся бластомерах и в наименьшем в то время, когда клетки не делятся.
Рис. 19. Изменение клеточного цикла при дроблении у амфибий: А — нормальный клеточный цикл; Б—клеточный цикл при дроблении
Микрофиламенты (сократимой кольцо)
Рис. 20. Схема расположения микротрубочек и микрофиламентов при клеточном делении (по Гилберту, 1993)
Высокая скорость делений яйцеклеток объясняется следующим:
- в яйцеклетках заранее запасены (в период оогенеза) непосредственные предшественники ДНК (цитидин, тимитидин-3-фосфаты, а также ядерные белки гистоны) и мРНК, а в других клетках таких запасов нет; ДНК синхронно делящихся бластомеров имеет значительно больше точек инициации репликации, нежели у других клеток эукариот.
Дробление является результатом двух координированных процессов — кариокинеза (митотическое деление ядра) и цитокинеза (деление клетки). Механическим аппаратом кариокинеза является митотическое веретено с его микротрубочками, состоящими из тубулина, а цитокинеза — сократимое кольцо микрофиламентов, состоящих из актина. Микротрубочки распределяют хромосомы по центриолям, тогда как в результате сокращения микрофиламентов происходит перешнуровывание цитоплазмы (рис. 20).
Обычно кариокинез и цитокинез координированы между собой. Локализация борозд дробления определяется положением звезд митотического веретена, а число борозд зависит от числа последних. Дробление протекает нормально, если яйцо содержит две звезды.
При дроблении зародыша происходит образование новых клеточных мембран посредством двух механизмов:
- синтез мембран de novo; растягивание плазматической мембраны ооцита.
За невероятным многообразием типов дробления скрывается общность функций и механизмов. Во всех случаях кариокинез и цитокинез должны быть скоординированы и яйцо разделено на клеточные области. В итоге восстанавливается характерное для соматических клеток ядерно-плазменное отношение и важная для развития информация распределяется между разными клеточными областями.
Клеточный цикл соматических клеток делится на четыре стадии (фазы). За митозом (М) следует пресинтетический период (G1), после которого происходит синтез ДНК (S). Затем наступает премитотическая фаза (G2), за которой опять следует митоз.
Высокая пролиферативная активность во время дробления обусловлена прежде всего укороченными клеточными циклами. В период синхронных делений дробления они отличаются отсутствием G1 периода, составляющего у обычных делящихся клеток значительную часть клеточного цикла.
Фаза синтеза ДНК занимает непродолжительный отрезок времени, а удельная доля митоза составляет, как правило, около 50 % (в отдельных случаях до 70-75 %) генерационного времени. Таким образом, главные синтетические процессы, протекающие в синхронно делящихся бластомерах, — синтез ДНК и гистонов.
Укорочение клеточных циклов при дроблении происходит потому, что в G1 фазе дробящихся эмбрионов отсутствует экспрессия генов, т. е. геном зародыша полностью неактивен. Все синтетические процессы, в том числе и синтез гистоновых белков, идут за счет материнских матричных РНК, накопленных еще в оогенезе. Исключение из этого правила составляют животные с асинхронным дроблением. Так, у млекопитающих некоторые гены эмбриона начинают экспрессироваться уже на стадии двух бластомеров.
Клеточный цикл бластомеров на ранних стадиях дробления в отличие от нормального клеточного цикла может быть гораздо более простым — двухфазным.
Остановка развития на стадии метафазы
Рис. 21. Модель регуляции клеточного цикла бластомеров (по Гилберту, 1993)
Факторы, регулирующие этот цикл, локализованы в цитоплазме. Это те же самые факторы, которые регулировали деления созревания при оогенезе: фактор, стимулирующий созревание (maturation promoting factor, MPF), цитостатический фактор (сytostatic factor, CSF) и ионы кальция.
Показано, что в делящихся клетках уровень активности MPF претерпевает циклические изменения. Активность MPF в бластомерах лягушки на ранних стадиях дробления наивысшая в М-фазе и не выявляется в S-фазе.
Действие MPF осуществляется путем изменения структуры ядерной оболочки. Цитостатический фактор стабилизирует фактор созревания, задерживая клетки в состоянии митоза, а кальций инактивирует цитостатический фактор, стимулируя переход к S-фазе за счет инактивации MPF. При добавлении CSF прекращаются также циклические сокращения кортикального слоя цитоплазмы, а последующая инъекция ионов кальция их стимулирует (рис. 21).
На ранних стадиях развития цитоплазма определяет скорость клеточных делений и продолжительность S — и M-фаз. В период асинхронных делений дробления появляется фаза G1, удлиняется продолжительность всех остальных фаз цикла. Начинается синтез различных видов РНК на матрицах ДНК, т. е. пробуждается транскрипционная активность генома зародыша.
Считается, что потеря синхронности дробления связана именно с активацией генома зародыша. В развитии всех животных наступает момент, начиная с которого темпы клеточной репродукции замедляются и происходит десинхронизация делений дробления. Изменение структуры клеточного цикла сопровождается увеличением подвижности бластомеров во время удлинившейся интерфазы и началом транскрипции собственных генов зародыша. Этот процесс контролируется ядерно-цитоплазматическим отношением, которое постепенно увеличивается при дроблении.
Гены, внесенные в геном зародыша со сперматозоидом, проявляют свое действие именно в этот период и, во всяком случае, не раньше окончания периода синхронного дробления. Именно в это время зародыш берет свою судьбу в собственные руки и перестает быть генетической копией матери. Поскольку период асинхронности начинается после разного числа делений дробления, то и пробуждение транскрипционной активности начинается при соответственно разном количестве бластомеров: у млекопитающих и круглых червей практически с самого начала развития, у иглокожих — со стадии 32 бластомеров, у амфибий — со стадии бластулы.
Пространственная организация зародыша во время дробления. Борозды дробления
Закономерности, связанные с наличием и распределением желтка в яйцеклетке и направлением хода борозд дробления, определяются двумя правилами Гертвига — Сакса:
- клеточное ядро стремится расположиться в центре чистой, свободной от желтка цитоплазмы; веретено клеточного деления стремится расположиться по направлению наибольшего протяжения свободной от желтка цитоплазмы.
Наиболее общей закономерностью голобластического (см. ниже) дробления мезо — и олиголецитальных яиц является взаимная перпендикулярность (ортогональность) первых трех борозд, причем две проходят по меридианам яйца, а третья — по экватору.
Борозды дробления (рис. 22):
Рис. 22. Ход борозд дробления (по Гилберту, 1993): А — первая меридиональная борозда; Б — вторая меридиональная борозда; В — широтная борозда
- меридиональная — проходит от анимального полюса зиготы к вегетативному; экваториальная (ее аналогом является широтная борозда, смещенная по отношению к экваториальной в направлении к анимальному полюсу из-за перегруженности желтком вегетативного полюса) — проходит по экватору зиготы; тангенциальная — проходит параллельно поверхности зиготы, в результате чего образуется многослойный зародыш.
Следует заметить, что скорость прохождения борозд дробления всегда обратно пропорциональна количеству желтка в клетке (иногда данное положение называют третьим правилом дробления). Дробление у разных многоклеточных протекает различно. Это зависит от особенностей строения яйцеклеток, прежде всего от количества и расположения в них желтка, что и лежит в основе классификации типов дробления.
Классификация типов дробления
Существует несколько типов классификации процесса дробления.
По характеру образования и расположению бластомеров:
- полное (голобластическое) — характерно для зигот, содержащих мало желтка (мезо — и изолецитальные яйца), при этом борозды дробления проходят через все яйцо, а имеющийся у них желток включается в вегетативные бластомеры; неполное (меробластическое) — характерно для зигот, содержащих большие запасы белков желтка (полилецитальные яйца), при этом борозды дробления не проникают в богатую желтком область цитоплазмы.
В зависимости от размеров образовавшихся бластомеров:
- равномерное — бластомеры на анимальном и вегетативном полюсе имеют одинаковые размеры; неравномерное — на анимальном полюсе сосредоточены более мелкие бластомеры, чем на вегетативном.
По скорости формирования бластомеров:
- синхронное — при одинаковой скорости образования бластомеров на обоих полюсах зиготы; асинхронное — на анимальном полюсе скорость образования бластомеров выше, чем на вегетативном.
Выделяют четыре основных типа голобластического дробления. Данная классификация основана на взаимном пространственном расположении бластомеров:
- радиальное; спиральное; билатерально-симметричное; неправильное (анархическое).
Радиальный тип дробления присущ голобластическим хордовым (ланцетник, круглоротые, осетровые рыбы, амфибии), иглокожим и некоторым другим группам.
При этом типе дробления бластомеры разных широтных ярусов располагаются, по крайней мере на ранних стадиях, довольно точно один над другим, так что полярная ось яйца служит осью поворотной симметрии.
Радиальный равномерный тип дробления характерен для яиц иглокожих (рис. 23).
У яйца лягушки наблюдается радиальный неравномерный тип дробления. Борозда первого деления дробления еще не завершила разделения богатой желтком цитоплазмы вегетативного полушария, а борозды второго деления уже закладываются вблизи от анимального полюса. Из-за большой концентрации желтка в вегетативной области борозды третьего деления дробления располагаются значительно ближе к анимальному полюсу (рис. 24).
В результате возникают область быстро делящихся бластомеров вблизи анимального полюса и область более медленно делящихся бластомеров вегетативного полюса.
Рис. 23. Голобластическое дробление иглокожих (по Гилберту, 1993): А, Б, В — последовательные стадии процесса
Рис. 24. Дробление яйца лягушки (по Гилберту, 1993): А — первое деление; Б — второе деление; В — четвертое деление
Рис. 25. Схема начальных стадий спирального дробления
(по Мануйловой, 1973): А — переход от 4 к 8 бластомерам (в клетках видны веретена деления); Б — стадия 8 бластомеров; В — переход от 8 к 16 бластомерам; Г — стадия 16 бластомеров
Спиральный тип дробления характеризуется утерей элементов симметрии уже на стадии четырех, а иногда и двух бластомеров и присущ беспозвоночным (моллюски, кольчатые и ресничные черви), объединяемым в группу Spiralia.
Свое название этот тип дробления получил из-за того, что при взгляде с анимального полюса последовательно отделяющиеся четверки (квартеты) бластомеров поворачиваются относительно анимально-вегетативной оси то в правую, то в левую сторону, как бы образуя при наложении друг на друга спираль (рис. 25).
Знак спирального дробления, его дексио-(право-) или лео-(лево-) тропность, т. е. «закрученность», определяется геномом матери данной особи. Оно во многом отличается от радиального типа дробления.
Во-первых, яйца не делятся параллельно или перпендикулярно анимально-вегетативной оси. Плоскости делений дробления ориентированы наклонно, что приводит к спиральному расположению дочерних бластомеров.
Во-вторых, число контактов между клетками больше, чем при радиальном дроблении. В-третьих, зародыши со спиральным типом дробления проходят меньше делений до начала гаструляции. Возникающие таким образом бластулы обычно не имеют бластоцели (стерробластула).
Билатеральный тип дробления (круглые черви, оболочники) характеризуется наличием одной плоскости симметрии. Наиболее примечательная особенность этого типа дробления заключается в том, что плоскость первого деления устанавливает единственную плоскость симметрии зародыша (рис. 26).
Каждое последующее деление ориентируется по отношению к этой плоскости симметрии так, что половина зародыша по одну сторону от первой борозды представляет собой зеркальное отражение половины зародыша по другую ее сторону.
Рис. 26. Дробление яйца аскариды (по Мануиловой, 1973): А — стадия двух бластомеров (в клетках видны веретена следующих делений); Б — стадия четырех бластомеров до поворота вегетативной пары; В — начало поворота вегетативной пары бластомеров; Г—ромбическая фигура из четырех бластомеров после завершения поворота (последовательные поколения предков половых клеток — Рп, где п — номер поколения)
рис. 27. Анархическое дробление (по Токину, 1987)
При билатеральном типе дробления формируется одна плоскость симметрии: первая борозда проходит экваториально, далее анимальный бластомер делится меридиональной бороздой, а вегетативный — широтной. В результате получается Т-образная фигура из четырех бластомеров, не обладающая поворотной симметрией.
Путем поворота вегетативной пары бластомеров Т-образная фигура преобразуется в ромбическую. Этот поворот происходит в промежутке между делениями, в интерфазе.
Анархический тип дробления присущ кишечнополостным и паразитическим плоским червям. Он характеризуется тем, что бластомеры слабо связаны между собой и располагаются неправильными цепочками (рис. 27).
При этом они могут распадаться, например под ударами волн, но из отдельных участков образуются полноценные зародыши. В результате плотного объединения бластомеров друг с другом в конце дробления образуется морула.
Основными типами меробластического дробления являются:
При поверхностном дроблении после слияния пронуклеусов ядро зиготы делится на много ядер, которые с небольшим количеством цитоплазмы по цитоплазматическим мостикам переходят во внешний слой свободной от желтка цитоплазмы (периплазму) и равномерно там распределяются
(речь идет о центролецитальных яйцеклетках). Здесь ядра еще несколько раз синхронно делятся, располагаясь довольно близко друг к другу (рис. 28).
На этой стадии, еще до возникновения клеточных перегородок (так называемой синцитиальной бластодермы), ядра окружаются особыми структурами из микротрубочек, затем деление ядер становится асинхронным, между ними формируются клеточные перегородки и образуется базальная мембрана, отделяющая периплазму от центральной массы желтка. Борозды дробления появляются, но они не заходят глубоко в яйцо. Возникший поверхностный слой клеток называется клеточной бластодермой. Этот тип дробления характерен для большинства насекомых.
Дискоидальный тип дробления присущ оплодотворенным полилецитальным и телолецитальным яйцеклеткам рыб, рептилий и птиц (рис. 29).
Рис. 28. Стадии поверхностного дробления (по Белоусову, 1993): А, Б—ядра дробления постепенно переходят на поверхность клетки; В, Г — образование перибласта
Рис. 29. Дискоидальное дробление куриного яйца (по Гилберту, 1993). Представлен вид со стороны анимального полюса. Борозды дробления не распространяются на желток, а возникающая бластодерма состоит из одного слоя клеток
Первые две борозды проходят перпендикулярно друг другу, но далее строгий порядок прохождения борозд нарушается. При этом на бластомеры делится лишь тонкий диск цитоплазмы (бластодиск), расположенный на анимальном полюсе.
У многих яйцеклеток еще на ранних стадиях дробления внутренние концы бластомеров расходятся и между ними возникает небольшая, постепенно увеличивающаяся полость дробления (бластоцель). У некоторых типов яйцеклеток бластоцель может достигать значительных размеров. Зародыш на этой стадии развития называется бластулой. В ходе дальнейшего развития бластоцель превращается в первичную полость тела, которая является основной полостью тела у низших беспозвоночных. У высших беспозвоночных и позвоночных она почти полностью вытесняется возникающей позже вторичной полостью тела (целомом).
Бластоцель выполняет две функции:
- дает возможность клеткам при гаструляции мигрировать внутрь зародыша; существование бластоцели предотвращает взаимодействие между клетками, которые находятся выше и ниже ее.
Бластоцель — первый возникающий по ходу развития отсек внутренней среды организма, отличающийся по ионному составу от наружной среды. Клетки стенок бластоцеля, отгораживающие его от наружной среды, образуют между собой плотные контакты. В обращенной к внешней среде мембране клеток расположены ионные каналы для натрия, хлора и других ионов, обеспечивающие их перенос по градиентам концентрации, а в мембране, обращенной в бластоцель, — ионные насосы, работающие против градиента. В результате Na и Cl — перекачиваются в бластоцель, где возникает их избыток, что создает в бластоцеле повышенное осмотическое давление и обеспечивает перенос воды, повышая в ней тургорное давление. Это давление растягивает поверхность зародыша, что важно для его последующего развития. Избыток в бластоцеле может оказывать влияние на скорость клеточных циклов и стимулировать экспрессию генов в клетках бластулы.
Имеется 5 основных типов бластул:
- целобластула; бластоциста; амфибластула; дискобластула; перибластула.
Целобластула (от греч. koilos — пустой) характерна для иглокожих и ланцетника (рис. 30, А). Этот тип бластул отличается тем, что бластомеры на анимальном и вегетативном полюсе почти одинаковы по размеру, тонкую бластодерму формирует один слой клеток
Рис. 30. Типы бластул (по Мануйловой, 1973; Токину, 1987; Белоусову, 1989): А — целобластула, поперечный разрез (морской огурец); Б — стерробластула, поперечный разрез (ставромедуза); В — стомобластула, поперечный разрез (известковые губки)
Полость внутри — бластоцель. Выделяют в целобластуле следующие зоны: крыша на анимальном полюсе, дно — на вегетативном, между ними находится краевая, или промежуточная, зона.
Бластула со стенкой равномерной толщины и очень маленьким центрально расположенным бластоцелем (рис. 30, Б), встречаемая у некоторых кишечнополостных, моллюсков и червей, называется стерробластулой (от греч. sterros — твердый, плотный).
Зародышевое развитие некоторых червей, асцидий приводит к образованию плакулы. Она имеет вид двухслойной пластинки, образованной однородными клетками. Между слоями располагается полость дробления (бластоцель).
У некоторых кишечнополостных, а также у млекопитающих на ранних стадиях развития бластоцель вообще не возникает, и дробление приводит к образованию плотного скопления клеток — морулы (от лат. morum — тутовая ягода) (рис. 31, А).
Рис. 31. Типы бластул (по Токину, 1987 и Белоусову, 1993): А — морула, внешний вид (мышь); Б — бластоциста, поперечный разрез (летучая мышь)
Своеобразным типом бластулы является стомобластула (от греч. stoma — рот), характерная для зародышевого развития известковых губок (рис. 30, В). Она имеет полость в центре и отверстие (фиалопор) на анимальном полюсе. Жгутикообразующие полюсы клеток обращены внутрь. По окончании дробления стомобластула выворачивается наизнанку через фиалопор (экскурвация), в результате чего образуется покрытая жгутиками амфибластула.
Бластоциста характерна для млекопитающих (рис. 31, Б). Образуется после прохождения стадии морулы.
Она представлена в виде пузырька (от греч. kystis — пузырь). Причем в составе этого пузырька имеются две части. Стенку формирует один слой клеток — трофобласт. Клетки эти очень светлые, другая часть — темноокрашенные клетки эмбриобласта. Трофобласт обеспечивает питание, а эмбриобласт идет на построение тела зародыша.
Амфибластула характерна для амфибий и некоторых представителей известковых губок. В отличие от целобластулы бластоцель в амфибластуле смещена к анимальному полюсу вследствие большего количества желтка на вегетативном полюсе. На анимальном полюсе находятся меньшие по размеру клетки — микромеры. В области вегетативного полюса располагаются макромеры. Так же как и в целобластуле, в амфибластуле выделяют крышу, дно и промежуточную (краевую) зону (рис. 32).
Дискобластула характерна для костистых рыб, рептилий и птиц. В результате дискоидального дробления образуется однослойная бластодерма (бластодиск), из которого затем возникает трех — или четырехклеточный пласт.
Рис. 33. Дискобластула — образование гипобласта в яйце птицы
(по Гилберту, 1993): А — бластодерма, преобразованная в трех — или четырехслойный клеточный пласт; Б—начало выселения клеток бластодермы в подзародышевую полость и формирование гипобласта; В — завершение образования дис кобластулы: формирование эпи — и гипобласта, бластоцели
Бластодерма дискобластулы несколько выгибается над желтком, и между ними формируется подзародышевая полость. На этой стадии четко различимы две области бластодиска: светлое поле (areapellucida) соответствует той его части, которая располагается над полостью; темное поле (area opaca) состоит из клеток, расположенных по краю бластодиска и прилежащих к желтку (рис. 33, А).
К моменту откладки яйца некоторые из клеток бластодермы выселяются в подзародышевую полость, где образуют второй слой (рис. 33, Б). Таким образом, на данной стадии зародыш состоит из эпибласта (наружный слой клеток) и лежащего под ним гипобласта. Между ними находится бластоцель (рис. 33, В).
Перибластула характерна для насекомых и представляет собой заключительную стадию поверхностного дробления. Энергиды (ядра с окружающими их островками цитоплазмы) мигрируют на поверхность яйца, где они окружаются новыми плазматическими мембранами. Первыми претерпевают изменения ядра, мигрировавшие к заднему полюсу яйца и образующие полярные клетки зародыша, которые дают начало половым клеткам взрослого организма. Клетки образующейся бластодермы формируют скопление на вентральной поверхности, обозначая место, где возникнут зародышевые листки (зародышевая полоска). Эта область дает начало всем клеткам насекомого. Остальные клетки бластодермы образуют внезародышевые оболочки. Впоследствии именно клеточная организация бластулы определит характер дальнейшего развития зародыша.
Источник