- Нефтезагрязнения и основные технологические способы урегулирования последствий
- Добыча нефти и газа
- Изучаем тонкости нефтегазового дела ВМЕСТЕ!
- Способы борьбы с нефтезагрязнением водных объектов
- Механические методы удаления нефти
- Физико-химические методы удаления нефти
- Химические методы удаления разливов нефти
- Микробиологическое разложение нефти
- Технология сбора плавающей нефти с водных поверхностей
Нефтезагрязнения и основные технологические способы урегулирования последствий
Сырьевая база нефтяной отрасли Российской Федерации по разведанным и предварительно оцененным запасам является одной из крупнейших в мире.
В процессе освоения нефтяных месторождений оказывается активное воздействие на окружающую среду в пределах территорий самих месторождений, трасс линейных сооружений (промысловых и магистральных трубопроводов), а также в ближайших населенных пунктах (городах, поселках).
В результате несовершенства технологий на всех этапах операций с нефтью и нефтепродуктами происходят отдельные аварии, приводящие к разливам нефти и нефтепродуктов, к загрязнению атмосферы, открытых водоемов, почвы и подземных вод,
В настоящее время на территории России ежегодно происходит более 20 тысяч официально зарегистрированных аварий. Объемы среднего разлива колеблются от 3 до 20 м 3 .
Технологическая цепь сферы обращения с нефтью и нефтепродуктами включает в себя сложную, многоуровневую инфраструктуру (скважины, трубопроводы, объекты хранения, переработки и реализации) которая негативно влияет на окружающую природную и социальную среды. Анализируя это, следует выделить некоторые особенности.
Этапы, включающие разведку, добычу и транспортировку сырой нефти в Большей степени влияют на экологию, нежели этапы переработки нефти, хранения и реализации нефти и нефтепродуктов.
Это связано, в 1-ю очередь, с технологической подготовленностью объектов, использующихся при обращении с нефтью и нефтепродуктами.
Для обзора масштабности данной тематики показательны следующие цифры. Согласно данным Федеральной службы по экологическому, технологическому и атомному надзору эксплуатационный фонд нефтяных скважин на территории Российской Федерации составляет около 160 тыс. единиц, а общая протяженность магистральных нефте- и продуктопроводов — более 73,2 тыс. км (данные Годового отчета о деятельности Федеральной службы за 2008 г). Помимо магистральных трубопроводов в технологической цепи транспортировки нефти используются также промысловые трубопроводы, общая протяженность которых выше. Для примера — только на месторождениях Западной Сибири эксплуатируются свыше 100 тыс. км промысловых трубопроводов, большая часть из которых нефтяные.
Исторически сложилось так, что большая часть имеющейся нефтяной инфраструктуры России (в частности, трубопроводы) была создана в середине-конце 20-го века и к настоящему времени порядка 30% этих трубопроводов в России имеют 30-летний срок эксплуатации, и не отвечают современным требованиям безопасности. Это усугубляет аварийность в нефтяной отрасли. Свидетельством тому является официальная ежегодная статистика разливов и чрезвычайных ситуаций, находящая свое отражение в отчетах различных органов власти.
Основными причинами большого количества и объемов разливов нефти можно назвать:
— изношенность основных фондов;
— не оперативное реагирование на аварии и происшествия, неслаженность действий при локализации и ликвидации разливов нефти и нефтепродуктов;
— недостаточность или полное отсутствие сил и средств, необходимых для предупреждения разливов нефти и нефтепродуктов, своевременного реагирования на них, локализации и ликвидации последствий.
Среди видов нефтесборочного оборудования часто применение находят Боновые сооружения (заграждения).
Ликвидация при использовании таких заграждений состоит в предотвращении растекания нефти и нефтепродуктов по водной поверхности.
Она может быть произведена для закрытых и открытых акваторий и для прибрежной зоны.
Самонадувные боновые заграждения при проведении работ по ликвидации разливов нефти и нефтепродуктов являются оперативным средством, которое эффективно остановит распространение пятен.
Сорбционные заграждения применяются для сбора и одновременного сорбирования нефти и нефтепродуктов, что делает процесс ликвидации разливов нефти многофункциональным.
Применение сорбирующих материалов также является очень эффективным способом в борьбе с нефтезагрязнениями.
Существует достаточно широкий ассортимент сорбентов для сбора нефтяных разливов.
Сорбенты на основе неорганических материалов (диатомит, цеолиты, глина, песок) имеют низкую нефтеемкость, гидрофильны, требуют дополнительного модифицирования, вызывают трудности с утилизацией и совершенно не удерживают легкие фракции нефтепродуктов (бензин, керосин, дизельное топливо).
Синтетические сорбенты обладают хорошей поглотительной способностью, однако отличаются большей стоимостью и сложностью утилизации в силу высокой токсичности продуктов горения.
Наиболее привлекательны и перспективны сорбенты растительного (органического) происхождения.
Они являются органической частью существующих экосистем и в наибольшей степени соответствуют экологическим требованиям. В качестве таковых можно выделить сорбенты на основе торфяного мха или стружки скорлупы кокосового ореха.
Помимо сорбентов в чистом виде используются также сорбирующие рукава, маты, боны, полотна.
Для урегулирования последствий нефтеразливов также часто используются биопрепараты, обладающие свойствами сорбентов и созданные на основе микробов-деструкторов углеводородов нефти.
Технология основана на первичной сорбции углеводородов нефти, сопровождающейся биокаталитической трансформацией с последующей деструкцией нефтяного загрязнения в природных условиях. Естественная нефтеокисляющая микрофлора природной среды не подавляется, а активизируется, кроме того, улучшаются санитарно-гигиенические показатели воды, за счет проявления антагонистического действия на патогенные микроорганизмы. Препараты оптимальны для решения проблем очистки морских вод после нефтезагрязнения.
Источник
Добыча нефти и газа
Изучаем тонкости нефтегазового дела ВМЕСТЕ!
Способы борьбы с нефтезагрязнением водных объектов
В настоящее время применяют следующие методы ликвидации нефтяных загрязнений водных объектов:
Механические методы удаления нефти
К ним относятся различные методы сбора нефти с водной поверхности, начиная от ручного вычерпывания нефти до машинных комплексов нефтемусоросборщиков.
Первоначально должно быть осуществлено концентрирование и ограждение находящейся на водной поверхности нефти при помощи плавающих бонов.
Конструкция бонового заграждения состоит из плавучей, экранирующей и балластной частей. Плавучая часть может быть выделена в виде отдельных поплавков (1) прямоугольного или круглого сечения.
Экранирующая часть представляет собой гибкую или жесткую пластину (2), присоединенную к плавучей части бона и нагруженную для придания устойчивости балластной цепью, трубой или растяжками (3).
Предлагается устраивать заграждение подводного типа в виде пневматического барьера, принцип работы которого заключается в создании препятствий на поверхности воды при непрерывной подаче воздуха через перфорированную трубу, уложенную на дно водоема под определенныи углом к направлению течения.
В Канаде общество по борьбе с пролитой нефтью и служба охраны окружающей среды предложила испытать дивертор воздушных пузырьков, когда насосы и скорость течения делают невозможным испытание плавучих бонов. Дивертор представляет собой стальную оцинкованную трубу диаметром 6 см, перфорированную, состоит из звеньев. Собирается на берегу и укладывается с помощью лебедки на дно реки под углом 15-30 o к течению Через перфорацию компрессором подается сжатый воздух. За счет расположения дивертора под углом нефть клином направляется к берегу, где она может быть собрана ковшом.
Максимальная длина 134м, якорь не требуется.
Во ВНИИСПТнефти (ИПТЭР) разработан и испытан образец устройства для сбора нефти с поверхности воды при аварийных разливах на подводных переходах магистральных нефтепроводов через судоходные реки. Принцип работы – эффект вихревой воронки. Испытания на р.Белой показали, что производительность нефтесборщика по нефти зависит от толщины пленки плавающей нефти и при толщине 3,5 мм составляет 30 м 3 /ч. Чем больше толщина пленки, тем больше производительность.
Один из запатентованных методов США предлагает использовать транспортер, установленный на плавучей платформе, нижняя часть движущейся ленты которого погружена в воду. При движении ленты через поверхность раздела вода – воздух нефть прилипает к ней и переносится вверх, где снимается с ленты специальным очистителем и переносится в накопитель. Для увеличения захвата нефти лента покрыта специальным волокнистым материалом.
В бывшем СССР предложено устройство следующей конструкции: в конце длинной фермы с емкостями на концах для плавучести, установлен сепаратор. С помощью направляющих эхранов нефть подается к сепаратору, откуда загрязненная вода и нефть поступают в специальные емкости.
Большое число методов и устройств предлагается для удаления нефти с больших акваторий (реки, моря). Зарубежные специалисты, например, французские, запатентовали устройство для обработки верхнего слоя жидкости, представляющей собой плоскодонное судно длиной 70 м, шириной 20 м, высотой 6 м и осадка – 4 м. В носовой части корпуса (на высоте воды) расположены отверстия для забора загрязненной нефтью воды, которая поступает в центральный отсек (внутри судна), где разделяется на нефть и воду.
Производительность такого типа устройств высокая: 150 т/ч, существует и более высокая производительность – до 6000 м 3 /ч.
Физико-химические методы удаления нефти
К ним следует отнести, в первую очередь, применение адсорбирующих материалов: пенополиуретан, угольная пыль, резиновая крошка, древесные опилки, пемза, торф, торфяной мох и т.п.
Губчатый материал из полиуретановой пены хорошо впитывает нефть и продолжает плавать после адсорбции. По расчетным данным 1 м 3 полиуретанового пенопласта может адсорбировать с поверхности воды приблизительно 700 кг нефти.
Адсорбенты органического и неорганического происхождения перед применением могут гранулироваться (порошкообразные) и пропитываться гидрофобизаторами.
Технология применения заключается в распылении их на нефтяную пленку.
Перспективно применение гранулированных адсорбентов и жидкостей, обладающих магнитными свойствами, которые после адсорбции нефти легко удаляются магнитом.
Американская фирма разработала технологию применения для сбора нефти магнитной жидкостью , придающей нефти магнитные свойства и позволяющая убирать ее даже в виде тонких пленок. Но есть проблемы, так как подобные реагенты в основном токсичны. Кроме того, возникают трудности с равномерным рассеиванием гранул на загрязненной водной поверхности, особенно в ветреную погоду.
Для удаления нефти возможно применение минерального сырья – в частности перлитового. При термообработке при 600-1000 o С перлитовое сырье вспучивается. Для гидрофобизации на нем создается тонкая пленка парафинполимерной смеси. Нефтепоглощение: у необработанного перлита 0,52; после обработки – 0,64-0,7 г/г перлита. Попадая на поверхность воды, материал адсорбирует нефть и образует густую плотную массу, удобную для сбора обычными средствами ( в том числе частыми траловыми сетями).
Патент Канады предусматривает сбор разлитой по поверхности воды нефти с помощью диатомовой земли при соотношении объемов земли и нефти от 3:1 до 1:1. Образующийся глинообразный материал опускается на дно водоема. Смесь диатомной земли с сеном, соломой, торфом в сочетании с адсорбированной нефтью плавает на поверхности не меньше недели.
Химические методы удаления разливов нефти
Удаление нефти с помощью химических соединений – детергентов – нашло применение при разливах нефти на море.
К детергентам относятся растворители и ПАВ, способствующие образованию эмульсий. Наибольшее число этих соединений относится к алкилбензолсульфонатам Na, которые отличаются по длине углеводородной цепи, связанной с бензольнымм кольцом. Следует отметить, что токсичность детергентов для морских организмов часто выше, чем самой нефти и поражающее действие нефтяного загрязнения на гидробионты может быть только усилено.
Эстонские авторы предлагают испытать модифицированный термообработкой торф. Им наполняют пористые капроновые боны, что значительно упрощает технологию сбора и удаления нефтепродукта с поверхности воды.
Немцы (ФРГ) для связывания нефти в нефтевоздушные суспензии предлагают испытать высокодисперсную аморфную гидрофобную кремнекислоту – силикагель – сорбент для нефти.
Микробиологическое разложение нефти
Это перспективное направление предотвращения загрязнения водоемов нефтепродуктами. Для некоторых бактерий нефть является питательной средой. Микробиологическая активность в большей степени зависит от температуры: скорость микробиологических процессов удваивается при увеличении температуры на 10 о С. На развитие микроорганизмов большое влияние оказывает содержание высоколетучих алифатических компонентов нефти. Введение в воду незначительных количеств нитратов и фосфатов увеличивает степень разрушения нефти на 70%.ю
Число органических соединений, используемых микроорганизмами в качестве источников углерода очень велико. Можно считать, что для каждого углеводородного соединения, существующие микроорганизмы способны его разложить.
Оценка степени загрязненности почв и методы их очистки разработаны гораздо слабее, чем для воды.
Механическая очистка почв и вод считается трудоемкой, связана со значительными экономическими затратами. По имеющимся, хотя и немногочисленным данным, перспективными могут оказаться микробиологические методы.
Испытания по биологической очистке старых нефтяных амбаров в округе Санта-Барбара (США): объем амбара 1110 м 3 . В течение 6 месяцев бактерии переработали 525 м 3 нефти, а вся – оказалась разрушенной. На переработку 1 м 3 материала в амбаре израсходовано 1,25 долларов.
Кавказским отделом гидрогеологии и водных ресурсов предложено создавать биологические пруды, обладающие повышенной самоочищающей способностью по отношению к нефтепродукту. Биопруд состоит из двух каскадов плотин, построенных в местах сточных вод. Верхний каскад пруда задерживает механические примеси и крупные частицы, а в нижнем каскаде происходит очистка от нефти и солей. Уровень воды в пруду на втором каскаде поддерживается на заданном уровне. Вода задерживается на десятки часов для микробиологического очищения. Иловые отложения (микроорганизмы) и мелководье создают благоприятные условия для роста камыша, осоки, то есть тех растений, которые потребляют неорганические ионы и способствуют развитию нефтеокисляющих бактерий.
Таким образом, существуют много методов и средств для ликвидаций нефтезагрязнения объектов природной среды. Но их выбор в каждом конкретном случае индивидуален в зависимости от природных и климатических условий.
Остановимся на вопросе сбора плавающей нефти с поверхности шламового амбара и нейтрализации ее вредного воздействия на компоненты природной среды.
Согласно выборочным обследованиям – количество плавающей нефти составляет от 50-60 кг до 10-12 т.
Нефть поступает в шламовые амбары 1) с буровыми растворами, в которые специально вводится как противоприхватная добавка; 2) с БСВ – от обмыва штоков буровых насосов, мытья полов в дизельном блоке и т.д.
В ряде случаев такая нефть содержит преимущественно легкие фракции углеводородов (Зап.Сибирь), а в некоторых местах (Узбекнефть, Белоруснефть, Краснодарнефтегаз) она может быть представлена тяжелыми смолистыми фракциями. В Западной Сибири, Татарии, Башкирии и др. практикуют откачку такой плавающей нефти в действующий нефтепромысловый коллектор. Однако откачка нефти с высоким содержанием смолистых и гудроновых фракций не эффективна и большая часть ее остается в амбарах.
Рассмотренные методы удаления нефти с водных поверхностей показали, что наиболее эффективными средствами являются физико-химическая сорбция и микробиологическое разложение. Эти методы наиболее перспективны для борьбы с нефтяными загрязнениями окружающей среды при строительстве скважин.
Перспективным является совмещение в одном материале способности физико-химической сорбции нефти и ее биодеструкции под действием микробиологического фактора компонентов природной среды.
Наиболее доступным и практичным целесообразно считать такой способ удаления нефтезагрязнения, при котором обеспечивается сбор плавающей нефти с помощью нефтесорбента и последующее захоронение такой массы непосредственно в шламовом амбаре или на специальных земельных участках с последующим ее биоразложением почвенными микроорганизмами. Для этого следует создать условия, которые обеспечат активизацию в почвенной среде природных нефтеокисляющих микроорганизмов. В первую очередь это (активизация) достигается путем создания в почве оптимального содержания биогенных элементов: Nи P. Этим и обусловлен поиск биостимуляторов, входящих в состав нефтесорбентов.
Главным требованием к материалам, сорбирующим углеводороды нефти, является наличие высокоразвитой пористой структуры с гидрофобной поверхностью. Таким требованиям в полной мере отвечают новые нефтесорбенты, полученные на основе продуктов пиролиза отходов древесины, в частности технической щепы, шпона, опилок мягких пород древесины.
При пиролизе отходов такой древесины образуется порошок с размерами частиц 0,3-0.7 мм. Называется сорбент «Илокор».
Сорбционная емкость 8-8,8 г/г сорбента.
Удельная поверхность 2840-3660 м 2 /г.
Плотность 0,82-0,87 г/см 3 .
Материал экологически чистый, не оказывает отрицательного влияния на биологические объекты.
Вторая модификация «Эколан».
Технология сбора плавающей нефти с водных поверхностей
Необходимые технические средства:
— для ограждения загрязненных участков акваторий и локализации разливов нефти;
— для сбора плавающей на поверхности воды нефти;
— для удаления, утилизации или уничтожения собранных загрязненных веществ.
Технология применения нефтесорбента ЭКОЛАН для ликвидации нефтяного загрязнения водных поверхностей амбаров.
Сущность: нефтесорбент наносится на слой плавающей нефти.
Технические средства нанесения: могут быть использованы вентиляционные установки.
Сорбент обладает высокой плавучестью, не тонет и при адсорбции нефти, не смачивается водой. Нефть с нефтесорбентом может легко удаляться с водной поверхности механическим путем (может быть черпак или специальный сепаратор).
при распылении сорбента в неблагоприятных условиях часть его выносится за пределы зоны очистки;
сорбент из-за низкой плотности плохо проникает в толщу нефтезагрязения и при большой толщине нефтяного слоя коэффициент использования сорбента резко снижается.
Указанные недостатки можно преодолеть путем подачи сорбента в зону очистки из-под воды, а распыление сорбента можно осуществить напорным водным потоком.
Источник