Способы борьбы с гидратообразованием
Гидратообразование — это процесс, возникающий при падениях температуры и давления, что влечет за собой уменьшение упругости водяных паров и влагоемкости газа, а, вследствие чего — образование гидратов.
Гидраты представляют собой белые кристаллы, похожие на снегообразную кристаллическую массу. Кристаллогидраты состоят из одной или нескольких молекул газа (метан, этан и т.д.) и несколько молекул воды.
При редуцировании давления газа происходит снижение его температуры, что приводит к возникновению и отложению твердых кристаллогидратов на поверхности клапана и седла регуляторов давления, вследствие чего они перестают работать, что может повлечь за собой полную остановку всей ГРС.
В качестве способов борьбы с образованием кристаллогидратов применяют следующие методы:
- общий или частичный подогрев газа;
- локальный подогрев корпуса регуляторов;
- ввод метанола в газопровод.
Все перечисленные методы имеют как свои достоинства, так и недостатки. Разберем их по отдельности.
Общий или частичный подогрев природного газа на ГРС и КС осуществляется с помощью промышленных подогревателей. Данный способ, несомненно, является наиболее удобным, так как позволяет постоянно поддерживать необходимую температуру газа для полноценного функционирования технологических схем ГРС.
Конструктивно подогреватели могут быть с прямым и непрямым (с помощью промежуточного теплоносителя) нагревом, и оснащены различными комплектами автоматики и вспомогательными устройствами.
Стоимость подогревателей колеблется в диапазоне от 1500 тыс. руб. до 3000 тыс. руб. и выше в зависимости от теплопроизводительности, пропускной способности и комплектации. Данный способ наиболее распространен, но требует значительных финансовых вложений.
Локальный подогрев регуляторов осуществляют путем обматывания корпуса электрическим ленточным обогревателем. Стоимость саморегулирующей нагревательной ленты колеблется в диапазоне от 500 до 1000 руб. за метр. При своей относительной экономической выгоде, данный способ требует наличия стороннего источника электроэнергии.
Ввод метанола в газопровод осуществляется путем установки системы впрыска. Стоимость данной установки составляет 200 — 250 тыс. руб. плюс затраты на приобретение расходного материала — метанола.
Кроме того нужно учесть, что метанол является очень сильным ядом, имеющим кумулятивные свойства, т.е. может накапливаться в организме. Даже незначительная концентрация метанола в воздухе может привести к очень сильному отравлению. Поэтому для обслуживающего персонала метанольной установки потребуются дополнительные средства защиты, а соответственно и дополнительные затраты.
Кроме вышеперечисленных способов, для предотвращения гидратообразования могут применять и другие: обогрев помещений, где расположен узел редуцирования, до необходимой температуры, установка на регулятор подогревающей водяной рубашки и т.д.
Все эти способы требуют либо значительных капиталовложений, либо посторонних источников энергии. Кроме того, установка дополнительного оборудования влечет за собой повышение трудозатрат по его обслуживанию.
Одной из новинок ОАО «Завод «Старорусприбор» стал регулятор давления газа РДУ-Т с теплогенератором, сконструированный специально для предотвращения гидратообразования. Применение регулятора в технологических схемах ГРС, где возможно отключение либо отказ от использования подогреватлей газа, несет значительный экономический эффект. Несомненным плюсом РДУ-Т является то, что теплогенератор работает без посторонних источников энергии — за счет собственной кинетической энергии газового потока.
Теплогенератор работает по принципу вихревого разделения потока газа. Холодная составляющая отводится и сбрасывается в задний фланец регулятора, что помогает за 6-8 минут нагреть теплогенератор до температуры +40-50 °С. Температура нагрева теплогенератора достаточна для предотвращения обмерзания запорно-регулирующего устройства.
Регуляторы давления РДУ-Т были установлены в ООО «Газпром трансгаз Санкт-Петербург», ООО «Газпром трансгаз Ставрополь», ОАО «Леноблгаз» на «проблемных» объектах магистральных газопроводов, где отсутствует узел подогрева газа, в 2006 — 2007 г. За все время эксплуатации регуляторы РДУ-Т не вызвали каких-либо замечаний у обслуживающего персонала ГРС. При температуре газа, располагающей к образованию кристаллогидратов, регуляторы оставались сухими, снежная шапка отсутствовала. Во время проведения плановых ревизий образований кристаллогидратов в исполнительных механизмах регуляторов также не было обнаружено.
Важным достоинством регуляторов РДУ-Т является то, что он не требует дополнительных трудозатрат по обслуживанию. Для работы теплогенератора необходим расход газа, проходящего через него, в объеме от 1000 м³/ч. Поэтому на малых расходах, теплогенератор может быть выключен, а РДУ-Т будет работать в режиме обычного регулятора РДУ.
В целом, учитывая современные реалии эксплуатации ГРС, применение регулятора РДУ-Т поможет решить целый комплекс проблем, связанных с гидратообразованием. Надежность, простота конструкции, видимый экономический эффект делают регулятор РДУ-Т важной составляющей узла редуцирования газораспределительных станций.
Материал предоставлен ОАО «Завод «Старорусприбор»
Источник
база Уфимского Топливно Энергетического Колледжа / фсякий полезный и безполезный мусор / флеха на флехе / флеха / чертежи / борьба с гидратами
Одной из важнейших проблем при эксплуатации газопроводов является образование газогидратов. Отлагаясь на внутренних стенках труб, гидраты резко уменьшают их пропускную способность и могут привести к аварийной остановке эксплуатации газопровода.
Гидраты углеводородных газов являются соединениями углеводородов с водой и представляют собой белые кристаллы, внешне похожие на снег или лед. Они состоят из одной или нескольких молекул газа (метана, пропана, углекислого газа и др.) и воды. Основными факторами, определяющими условия образования гидратов, являются состав газа, его давление, температура, полное насыщение газа парами воды.
Гидраты – это сами по себе нестабильные соединения, которые при понижении давления и повышении температуры легко разлагаются на газ и воду. Они выпадают при редуцировании газа, нарушая работу оборудования КС, ГРС, на линейной части крановых узлов, кроме этого забивают импульсные трубки, выводя из строя контрольно-измерительные приборы и автоматику (КИПиА).
Гидраты образуются в магистральных и в технологических газопроводах . Из-за низкого качества осушки газа на промыслах влага конденсируется в магистральных газопроводах, в результате чего снижается их пропускная способность и возникают условия для образования кристаллогидратов,
Обязательными условиями существования гидратов является снижение температуры газа ниже точки росы, при которой происходит конденсация паров воды (наличии капельной влаги в газе), а также ниже температуры равновесного состояния гидратов.
Образование гидратов плохо влияет на работу газопровода. В частности это может привести к образованию гидратной пробки в газопроводе, которая может частично или полностью перекрыть газопровод. то в свою очередь может вызвать протекание или разрыв
технологическим факторам, влияющим на образование гидратов, относят:
а) недостаточно тщательные продувки газопровода перед пуском;
б) отсутствие конденсатосборников и продувочных патрубков в пониженных местах газопровода или нерегулярное удаление из них скапливающейся жидкости;
в) недостаточную очистку газа до подачи его в магистральный газопровод
Места возможного гидратообразования в газопроводе определить не слишком сложно. График снижения температуры и падения давления данного газопровода сопоставляется с графиком температуры образования гидратов. Для обнаружения зоны возможного гидратообразования необходимо знать влагосодержание и плотность транспортируемого газа, а также его температуру и давление. Для заданного участка в принятых масштабах строятся кривые изменения давления 1 и температуры 2 по длине газопровода. Используя кривые влагосодержания (рис. 2.18) и равновесного состояния гидратов (рис. 2.19), на этот же график наносятся кривые точки росы 3 и равновесной температуры гидратообразования 4 (рис. 2.20).
Чтобы не сталкиваться с проблемой гидратообразования, нужно устранить хотя бы одно из главных условий существования гидратов: низкую температуру, высокое давление или высокую влажность газа.
Способы предупреждения образования гидратов: Поддержание температуры потока газа выше температуры гидратообразования с помощью подогревателей, теплоизоляции трубопроводов
и подбора режима эксплуатации, обеспечивающего максимальную температуру газового потока.
Понижение температуры точки росы газа:
• уменьшением давления при транспорте газа (при этом наряду с понижением температур точек росы снижается также температура начала образования гидратов);
• нейтрализацией воды, выпадающей в жидком виде;
• очисткой газа от паров воды – газоосушка [3].
Уменьшение давления при транспорте газа обычно используется только для ликвидации гидратных про бок, но не как средство предупреждения образования гидратов, потому что это связано с одновременным уменьшением пропускной способности газопровода. Для понижения точки росы газа нейтрализацией
выпадающей воды в поток газа вводят ингибиторы. В качестве ингибиторов гидратообразования исполь-
зуются метанол и этиленгликоль. Эффективность их применения зависит от условий гидратообразования.
Ингибиторы, введенные в поток природного газа, частично поглощают водяные пары и переводят их в раствор, не образующий гидратов или же образующий их при более низких температурах.
Уменьшение плотности газа извлечением из него тяжелых углеводородов. При этом увеличивается
давление и снижается температура, при которых начинают образовываться гидраты.
Способы борьбы с гидратообразованием:
1 Закачка в газопроводы ингибиторов. В качестве ингибиторов могут применяться метиловый спирт
(метанол), раствор диэтиленгликоля (ДЭГ), триэтиленгликоля (ТЭГ) и раствор хлористого кальция.
Широкое применение для борьбы и ликвидации уже образовавшихся гидратных пробок получил метанол (СН3ОН). ля уменьшения расхода метанола его необходимо вводить в начале зоны возможного гидратообразования в газопроводе. Экономически метанол выгодно применять при небольших расходах газа, когда из-за высоких капиталовложений нерационально использовать другие методы. Этот способ целесообразно применять также там, где гидраты образуются редко и в небольших количествах. Метанол в газопроводе вступает во взаимодействие с водяными парами и образует раствор, температура которого очень низкая и тем самым может быть легко выведен из газопровода.
2 Снижение давления при образовании гидратной пробки, что приводит к разложению гидрата. Давление снижают следующим образом: отключают участок газопровода, в котором образовалась
пробка, и через продувочные свечи с обеих сторон пробки сбрасывают из него газ в атмосферу. Сбрасывать газ нужно постепенно, не допуская хотя бы незначительного перепада. Для этого на обводах кранов устанавливаются манометры, и между кранами создается надежная связь. Ранее применялось
одностороннее стравливание газа между одним из кранов и гидратной пробкой. Однако такой метод
рекомендован быть не может, так как имелись случаи, когда одностороннее давление газа с силой
сдвигало пробку, и получался гидравлический удар, приводивший к повреждению крана. Снижение давления дает положительный эффект при ликвидации гидратной пробки образовавшейся при положительных температурах. При отрицательных температурах этот метод не дает результата.
3 Подогрев газа и локальный подогрев мест отложения гидратов и образования гидратных пробок.
Устранение закупорок, не поддающихся растворению, производится путем: — вырезки специальных окон в газопроводах; — демонтажа соответствующих участков газопроводов; — продувки газопровода инертным газом под давлением.
Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.
Источник
Методы борьбы с гидратообразованием
1. Подогрев газа.
Предупреждение образования гидратов подогревом газа заключается в том, что при сохранении давления в газопроводе температура газа поддерживается выше равновесной температуры образования гидратов.
2) Снижение давления.
Предупреждение образования гидратов снижением давления заключается в том, что при сохранении температуры в газопроводе снижается давление ниже равновесного давления образования гидратов. Этот метод применяют и при ликвидации уже образовавшихся гидратов.
3) Ввод ингибиторов.
Ингибиторы, введенные в насыщенный водяными парами поток природного газа, частично поглощают водяные пары и переводят их вместе со свободной водой в раствор, который совсем не образует гидратов или образует их, но при более низких температурах. В качестве ингибиторов применяют метиловый спирт (метанол), растворы этиленгликоля (ЭГ), диэтиленгликоля (ДЭГ), триэтиленгликоля (ТЭГ), хлористого кальция, этилкарбитола (ЭК) и др.
В результате осушки газа точка росы паров воды должна быть снижена ниже минимальной температуры при транспортировке газа (влажность должна составлять не более 0,05—0,1 г/м 3 ). Присутствие азота, сероводорода и углекислого газа повышает температуру гидратообразования.
5) Совокупность методов.
69. Подготовка газа и конденсата к транспорту.
На природный газ показатели качества определяются отраслевыми стандартами ОСТ 51.40-93 в зависимости от климатической зоны: точка росы по влаге и тяжелым углеводородам (°С); содержание мех примесей (г/100м 3 ); содержание сероводорода (г/100м 3 ); содержание кислорода (% от массы); содержание меркаптановой серы (г/100м 3 ).
На газоконденсатных месторождениях подготовка продукции включает в себя технологический процесс, сбор, первичную обработку, замеры дебета скважин, контроль и поддержание заданных технологических режимов, очистку продукции от механических примесей, разделение газа и конденсата и подготовку газа и конденсата к магистральному транспорту.
Способы подготовки газа по уровню подготовки, по сложности технологического процесса разнообразны. Выбор метода подготовки газа, а следовательно и технологической схемы установки зависит от следующих параметров и условий:
1. фракционного состава газа и наличия в нем конденсата;
2. содержания воды в газе;
3. содержания в газе H2S, СО2 и органических кислот;
4. температуры и давления газа в пластовых условиях и на устье скважины;
5. климатических и почвенных условий месторождения и трассы трубопровода.
На газоконденсатных месторождениях применяют три основных способа подготовки:
1. низкотемпературная сепарация;
2. сорбционные способы;
3. их комбинирование.
На газовых месторождениях практически не содержащих конденсата, где подготовка газа заключается в его осушке для предупреждения гидратообразования, применяют сорбционные способы (абсорбционные, адсорбционные). Температура точки росы достигает при этом –25 0 С.
На газоконденсатных месторождениях с содержанием конденсата jк ≤ 100 см 3 /м 3 применяется НТС основанная на получении температуры газа ниже 0 0 С за счет прохождения его через дроссель. В результате гидраты выпадают в сепараторе.
Для газоконденсатных месторождений с jк> 100 см 3 /м 3 используется комбинированный способ подготовки (абсорбционный + НТС).
В сепаратор предварительно поступает предварительно охлажденная продукция газовых скважин. После снижения давления в сепараторе влага, находящаяся в газе, образует гидраты с углеводородами и выпадает и также отделяется конденсат. Сухой газ поступает в трубопровод. При содержании в подготавливаемом газе значительного количества тяжелых углеводородов, происходит разделение продукции скважин на метан и конденсат. Эффективным условием использования НТС является величина начального давления.
Процесс НТС осуществляется обычно при температуре ниже –5 0 С. Можно осуществить процессы в двух вариантах:
1. с использованием энергии природного газа, с получением холода за счет его собственного расширения;
2. получение низких температур за счет использования холодильных машин.
При уменьшении температуры газа, поступающего на установку НТС, гидраты выпадают в сепараторе. Реализация процессов может быть обеспечена при следующих условиях:
1) Охлаждение за счет расширения потока без ингибиторов гидратообразования (без внешнего обогрева и с внешним обогревом);
2) Охлаждение с вводом ингибитора (без стабилизации и с ней);
3) Охлаждение потока газа перед сепаратором в абсорбционных и холодильных машинах.
Сорбционные процессы основаны на поглощении влаги твердыми или жидкими веществами.
Адсорбция – это поглощение вещества поверхностью твердого поглотителя.
На поверхности веществ имеются несбалансированные силы, которые обусловлены неполным насыщением валентных связей поверхностных атомов. Такие поверхности, которые являются поверхностями твердых веществ, взаимодействуют с прилегающими фазами. Сущность адсорбции состоит в концентрации вещества на поверхности или объеме микропор твердого тела. Размеры пор соизмеримы с размерами молекул адсорбционного вещества. В результате под влиянием сил межмолекулярного взаимодействия происходит концентрация вещества. Увеличение концентрации поглощаемого вещества происходит додостижении состояния равновесия.
Адсорбенты должны обладать следующими свойствами: иметь большую адсорбционную емкость, высокую механическую прочность, обладать способностью к регенерации и стабильностью адсорбционных слоев при регенерации. По свои свойствам для осушки газа наиболее пригодны активированный уголь, силикагель, цеолиты.
Адсорбционные процессы применяются в тех случаях, для осушки газа, когда требуется глубокое охлаждение газа для извлечения влаги. Преимущества: отсутствие предварительной осушки газа, т.к. на ряду с углеводородами адсорбенты поглощают и воду.
Процесс реализуется на коротко-цикловых установках. Газ поступает в сепаратор, где отделяется от капельной жидкости и на выходе из сепартора разделяется на два потока. Один поток (80% от всего кол-ва) направляется в один сепаратор, где от него отделяется вода, пропан-бутановая фракция и тяжелые углеводороды, второй является газ десорбции проходит печь, нагревается, отправляется в другой адсорбер для регенерации адсорбента. Оттуда насыщенный газ направляется к сепаратору для разделения, отделившийся газ на установку осушки. Осушенный газ через теплообменник в магистральный газопровод. Таким образом, процесс состоит из двух циклов адсорбции и десорбции.
Абсорбция – это избирательный процесс поглощение газов или паров жидкими поглотителями – абсорбентами. В этом процессе происходит поглощение вещества и переход веществ из газовой или паровой среды в жидкую. Переход вещества из жидкой среды в паровую или газовую называется десорбцией. Оба процесса выполняются в одном производственном процессе.
Абсорбент, поглотивший пар или газ называется насыщенным или отработанным, а освободившийся от целевых компонентов – регенерированным.
Абсорбенты, применяемые для осушки природного газа, должны обладать высокой растворимостью с водой, простотой и стабильностью при регенерации, относительно низкой вязкостью и упругостью паров при температуре контакта, низкой коррозионной способностью, незначительной растворяющей способностью по отношению к газам и жидким углеводородам, а так же не должен образовывать эмульсии и пены. Наиболее распространенные абсорбенты ЭГ, ДЭГ, ТЭГ.
Абсорбция осуществляется обычно в тарельчатых аппаратах, в которых газ направляется сверху. Разделение воды и гликоля происходит за счет значительной разности температур кипения. Двигаясь навстречу гликолю газ отдает пары воды и осушенный поступает в магистральный газопровод, проходя фильтр для улавливания абсорбера. Из нижней части установки насыщенный абсорбент поступает в емкость выветривания, где он разгазируется, затем он направляется в десорбер, нагревается и происходит испарение воды. Абсорбент подается в верхнюю часть абсорбера, а вода с небольшим кол-вом абсорбера в сепаратор, где, накопившись, сбрасываются или в десорбер.
Установки подготовки конденсата территориально могут находиться на промыслах и входить в комплекс УПГ или в комплекс сооружений ГПЗ.
Условно рассматриваются четыре уровня подготовки конденсата:
1. дегазация конденсата;
4. полная стабилизация конденсата.
Поскольку процессы разделения газа и конденсата, а так же подготовки их к транспорту взаимосвязаны между собой, имеют общее оборудование, то при изменении эксплуатационных характеристик газоконденсатные месторождения с течением времени изменяются и параметры технологического процесса установок подготовки.
Источник