Способы борьбы с бактериофагами

Как бактериофаги помогают бороться с вирусами

В последнее время часто ведутся разговоры об альтернативе антибиотикам в борьбе с бактериальными инфекциями, в качестве которой все чаще начинают рассматривать бактериофаги. Бактериофаги присутствуют в организме человека с рождения. По мере изучения биологии бактериофагов открываются все новые подробности их свойств, в том числе возможность оказывать противовирусное действие.

Мы подготовили адаптированный тезисный перевод статьи Andrzej Gorski, Ryszard Miedzybrodzki , Maciej Zaczek & Jan Borysowski «‎Phages in the fight against COVID-19?» («Фаги в борьбе с COVID-19?»), опубликованной 26 августа 2020 года в журнале Future Microbiology, в которой рассказывается про механизмы противовирусного действия бактериофагов.

В последнее время часто ведутся разговоры об альтернативе антибиотикам в борьбе с бактериальными инфекциями, в качестве которой все чаще начинают рассматривать бактериофаги. Бактериофаги присутствуют в организме человека с рождения. По мере изучения биологии бактериофагов открываются все новые подробности их свойств, в том числе возможность оказывать противовирусное действие.

Мы подготовили адаптированный тезисный перевод статьи Andrzej Gorski, Ryszard Miedzybrodzki , Maciej Zaczek & Jan Borysowski «‎Phages in the fight against COVID-19?» («Фаги в борьбе с COVID-19?»), опубликованной 26 августа 2020 года в журнале Future Microbiology, в которой рассказывается про механизмы противовирусного действия бактериофагов.

Результаты работ, проведенных в последующие 15 лет, выступают в поддержку предположения о том, что фаговая терапия может быть использована в качестве дополнительной терапии вирусных инфекций.

Исследования показали следующие возможные противовирусные эффекты фагов:

1. Bocian K, Borysowski J, Zarzycki M et al. The effects of T4 and A3/R bacteriophages on differentiation of human myeloid dendritic cells. Front. Microbiol. 7, 1267 (2016).

2. Borysowski J, Przybylski M, Miedzybrodzki R et al. The effects of bacteriophages on the expression of genes involved in antimicrobial immunity. Adv. Hyg. Med. Exp. 73, 414–420 (2019).

3. Gorski A, Miedzybrodzki R, Jonczyk-Matysiak E et al. Phage-specific diverse effects of bacterial viruses on the immune system. Future Microbiol. 14(14), 1171–1174 (2019).

4. Lamut A, Gjorgjieva M, Naesens L et al. Anti-influenza virus activity of benzo[d]thiazoles that target heat shock protein 90. Bioorg. Chem. 98, 103733 (2020).

5. Ma C, Zhang X, You J et al. Effect of heat shock on murine norovirus replication in RAW264.7 cells. Microb. Pathog. 142, 104102 (2020).

6. Nguyen S, Baker K, Padman BS et al. Bacteriophage transcytosis provides a mechanism to cross epithelial cell layers. mBio 8(6), e01874–17 (2017).

7. Zaczek M, Gorski A, Skaradzinska A et al. Phage penetration of eukaryotic cells: practical implications. Future Virol. 14(11), 745–760 (2019).

8. Luan J, Lu Y, Gao S, Zhang L. A potential inhibitory role for integrin in the receptor targeting of SARS-CoV-2. J. Infect. 81(2), 318–356 (2020).

9. Gorski A, Bollyky PL, Przybylski M et al. Perspectives of phage therapy in non-bacterial infections. Front. Microbiol. 9, 3306 (2019).

10. Miedzybrodzki R, Fortuna W, Weber-Dabrowska B, Gorski A. Bacterial viruses against viruses pathogenic for man? Virus Res. 110(1-2), 1–8 (2005).

11. Lin CW, Lin KH, Hsieh TH et al. Severe acute respiratory syndrome coronavirus 3C-like protease-induced apoptosis. FEMS Immunol. Med. Microbiol. 46(3), 375–380 (2006).

12. Khomich OA, Kochetkov SN, Bartosch B, Ivanov AV. Redox biology of respiratory viral infections. Viruses 10(8), 392 (2018).

13. Dufour N, Delattre R, Chevallereau A et al. Phage therapy of pneumonia is not associated with an overstimulation of the inflammatory response compared to antibiotic treatment in mice. Antimicrob. Agents Chemother. 63(8), e00379–19 (2019).

14. Gogokhia L, Buhrke K, Bell R et al. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe. 25(2), 285–299 (2019).

15. Weber-Dabrowska B, Mulczyk M, Gorski A. Bacteriophage therapy of bacterial infections: an update of our Institute’s experience. Arch. Immun. Ther. Exp. 48(6), 547–551 (2000).

16. Borysowski J, Miedzybrodzki R, Przybylski M et al. The effects of bacteriophages on the expression of immunologically important genes in CaCo2 cells. Presented at: 9th International Annual Conference Phages 2019. Bacteriophages in Medicine, Food and Biotechnology Oxford, UK 11–12 Sept 2019 (Abstract book p. 25).

1. Bocian K, Borysowski J, Zarzycki M et al. The effects of T4 and A3/R bacteriophages on differentiation of human myeloid dendritic cells. Front. Microbiol. 7, 1267 (2016).

2. Borysowski J, Przybylski M, Miedzybrodzki R et al. The effects of bacteriophages on the expression of genes involved in antimicrobial immunity. Adv. Hyg. Med. Exp. 73, 414–420 (2019).

3. Gorski A, Miedzybrodzki R, Jonczyk-Matysiak E et al. Phage-specific diverse effects of bacterial viruses on the immune system. Future Microbiol. 14(14), 1171–1174 (2019).

4. Lamut A, Gjorgjieva M, Naesens L et al. Anti-influenza virus activity of benzo[d]thiazoles that target heat shock protein 90. Bioorg. Chem. 98, 103733 (2020).

5. Ma C, Zhang X, You J et al. Effect of heat shock on murine norovirus replication in RAW264.7 cells. Microb. Pathog. 142, 104102 (2020).

6. Nguyen S, Baker K, Padman BS et al. Bacteriophage transcytosis provides a mechanism to cross epithelial cell layers. mBio 8(6), e01874–17 (2017).

7. Zaczek M, Gorski A, Skaradzinska A et al. Phage penetration of eukaryotic cells: practical implications. Future Virol. 14(11), 745–760 (2019).

8. Luan J, Lu Y, Gao S, Zhang L. A potential inhibitory role for integrin in the receptor targeting of SARS-CoV-2. J. Infect. 81(2), 318–356 (2020).

9. Gorski A, Bollyky PL, Przybylski M et al. Perspectives of phage therapy in non-bacterial infections. Front. Microbiol. 9, 3306 (2019).

10. Miedzybrodzki R, Fortuna W, Weber-Dabrowska B, Gorski A. Bacterial viruses against viruses pathogenic for man? Virus Res. 110(1-2), 1–8 (2005).

11. Lin CW, Lin KH, Hsieh TH et al. Severe acute respiratory syndrome coronavirus 3C-like protease-induced apoptosis. FEMS Immunol. Med. Microbiol. 46(3), 375–380 (2006).

Читайте также:  Изменение способа исполнения решения суда по сносу

12. Khomich OA, Kochetkov SN, Bartosch B, Ivanov AV. Redox biology of respiratory viral infections. Viruses 10(8), 392 (2018).

13. Dufour N, Delattre R, Chevallereau A et al. Phage therapy of pneumonia is not associated with an overstimulation of the inflammatory response compared to antibiotic treatment in mice. Antimicrob. Agents Chemother. 63(8), e00379–19 (2019).

14. Gogokhia L, Buhrke K, Bell R et al. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe. 25(2), 285–299 (2019).

15. Weber-Dabrowska B, Mulczyk M, Gorski A. Bacteriophage therapy of bacterial infections: an update of our Institute’s experience. Arch. Immun. Ther. Exp. 48(6), 547–551 (2000).

16. Borysowski J, Miedzybrodzki R, Przybylski M et al. The effects of bacteriophages on the expression of immunologically important genes in CaCo2 cells. Presented at: 9th International Annual Conference Phages 2019. Bacteriophages in Medicine, Food and Biotechnology Oxford, UK 11–12 Sept 2019 (Abstract book p. 25).

Источник

Бактериофаги и способы борьбы с ними

Бактериофаги — вирусы бактерий, которые широко распространены на предприятиях молочной промышленности. Они содержатся в молочном сырье, пастеризованном и даже стерилизованном молоке, сыворотке, производственных заквасках, на оборудовании, в воздухе, на стенах и полах цехов предприятий, санитарной одежде персонала и др. Бактериофаги в неактивной форме (профаги) содержатся в сухих и замороженных заквасках. Бактериофаги при попадании в благоприятные условия, например теплое молочное сырье с внесенной закваской, а также при воздействии на заквасоч- ные культуры неблагоприятных факторов (использование молока нестандартного состава, молока с добавлением сыворотки или немолочных компонентов, перепад температур, применение для сквашивания неоптимальной температуры для микрофлоры закваски, многократное перемешивание и др.) активизируются и начинают активно паразитировать на чувствительных клетках.

У некоторых работников молочных предприятий существуют различные мифы, например, если применять закваски прямого внесения, то бактериофагов не будет. Применение заквасок прямого внесения сокращает риски возникновения активного процесса фаголизиса, но не исключает его полностью, особенно когда одна и та же закваска применяется длительный период. Другой миф — ацидофильные бактерии не подвергаются действию бактериофагов, и если в технологии сметаны использовать закваски совместно с ацидофильными бактериями, то процесс сквашивания не замедляется и сметана всегда будет хорошего качества с гомогенной консистенцией. Это утверждение неверно. Ацидофильные бактерии и другие молочнокислые палочки подвержены воздействию гомологичных к ним бактериофагов.

Исследования, показывают, что практически все виды молочнокислых бактерий, используемые в составе заквасок, могут поражаться бактериофагами.

В условиях промышленного предприятия всегда находятся бактериофаги в различных источниках. Задача работников — проводить ряд мероприятий, сдерживающих активное развитие бактериофагов и их накопление в высоком титре — более 1 •10 4 БОЕ (бляшкообразующих единиц) в 1 см³ сырья или других источников.

В целях профилактики обострения фаговой инфекции на молочных предприятиях необходимо применять различные способы борьбы с бактериофагами. Условно методы выявления фаговых частиц на предприятии подразделяют на косвенные и прямые. К косвенным методам относят:

  • низкую титруемую кислотность в конечный период сквашивания заквасок или продукта;
  • увеличение продолжительности свертывания нормализованной смеси;
  • невыраженный вкус закваски или продукта (снижение газо- и ароматобразования);
  • торможение или отсутствие нарастания кислотности сыворотки при получении и обработке зерна;
  • обнаружение агглютинации и измененных форм клеток в микроскопическом препарате.

К прямым способам определения бактериофагов относят методы, позволяющие судить о наличии фагов и их количестве в молочном продукте, в смывах с оборудования, воздухе. Эти методы заключаются в проведении микробиологических посевов чувствительной к фагам культуры и контролируемого на наличие фагов специальным образом подготовленного образца. Для определения не только наличия бактериофагов в контролируемом образце, но и определения их количества используют двухслойный метод и чувствительные культуры к фагам лактококков, термофильных молочнокислых стрептококков и молочнокислых палочек.

Факторы, усиливающие действие бактериофагов:

  • хранение и транспортирование молочного сырья при температуре выше 10 °С;
  • продолжительное резервирование молочного сырья (сырого цельного и обезжиренного молока, сливок);
  • прямое или косвенное попадание в молоко различных консервирующих веществ;
  • внесение в молоко веществ, повышающих его термоустойчивость;
  • интенсивное перемешивание нормализованной смеси в процессе развития заквасочной микрофлоры;
  • длительное применение заквасок и бактериальных концентратов одних видов и производителей;
  • произвольное смешивание заквасочных культур.

Способы борьбы с бактериофагами подразделяют на биологические, физические и химические. К биологическим ‒ относят своевременную и целенаправленную ротацию (замену) одних заквасок на другие. Физический способ — тепловая обработка молочного сырья. Чем выше температура обработки и меньше фагов в исходном сырье, тем меньше остается фаговых частиц в молочном сырье, предназначенном для ферментации. Однако надо помнить о высокой термоустойчивости бактериофагов, что позволяет им выживать и оставаться в стерилизованном и сухом молочном сырье. К химическим способам борьбы с бактериофагами относят мойку и дезинфекцию оборудования, инвентаря, стен и полов производственных помещений, очистку воздуха. Кроме дезинфекции паром необходимо применять химические дезинфицирующие вещества. К наиболее эффективным в отношении бактериофагов дезинфицирующим средствам относят такие, в составе которых содержатся уксусная и надуксусная кислоты, перекись водорода. Поскольку уксусная и надуксусная кислоты относятся к летучим, то необходимо строго контролировать их концентрацию в поступающих дезинфицирующих средствах и их рабочих растворах, которые готовят непосредственно на предприятии.

На снижение количества бактериофагов влияют и другие производственные условия: применение асептического оборудования; соблюдение санитарно-гигиенических условий; очистка воздуха от бактерий и вирусов; проведение фагового мониторинга с определением критических контрольных точек для каждого вида продукта.

Источник

Глобальная проблема XXI века: «супербактерии» против человечества

Глобальная проблема XXI века: «супербактерии» против человечества

Как известно, в 2014 году в Женеве Всемирная организация здравоохранения сделала доклад, содержащий полную картину влияния традиционных антимикробных препаратов на бактерии с учетом данных полученных из 114 стран.

Картина получилась неутешительная: традиционные лекарственные препараты, включая антибиотики, оказались бесполезны либо слабы в отношении различных переносчиков инфекции. Явление назвали «антимикробной резистентностью».

В 2017 году ВОЗ опубликовала список критической группы бактерий, представляющих собой повышенную опасность.

В их числе —Acinetobacter baumannii, синегнойная палочка (Pseudomonas aeruginosa), энтеробактерии (Enterobacteriaceae), энтерококки фэциум (Enterococcus faecium), золотистый стафилококк (Staphylococcus aureus), хеликобактер пилори (Helicobacter pilori), кампилобактеры (Campylobacter), сальмонелла (Salmonella), гонококк (Neisseria gonorrhoeae), пневмококк (Streptococcus pneumonia), гемофильная палочка (Haemophilus influenza, шигелла (Shigella).

Читайте также:  Способы развития научного познания

В числе устойчивых микроорганизмов оказались также бактерии Klebsiella pneumonia, Escherichia coli, MRSA (метициллин устойчивые бактерии Staphylococcus aureus) и другие, вызывающие серьезные заболевания: сепсис, гонорею, инфекции мочевыводящих путей, пневмонию.

Тесты на устойчивость к антибиотикам. Бактерии высевают штрихами на чашках с белыми дисками, пропитанными антибиотиком. Чистые кольца, как на чашке слева, показывают, что бактерии не выросли — что свидетельствует об отсутствии устойчивости у этих бактерий. Бактерии на чашке справа полностью восприимчивы только к трем из семи протестированных антибиотиков / Dr Grahan Beards

Так, к примеру, по данным ученых ВОЗ, случаи бесполезного лечения гонореи цефалоспоринами третьего поколения, относящихся к группе антибиотиков повышенной активности и применяющихся в качестве «крайней меры», подтвердились в десяти странах.

Случаи зарегистрированы в Австралии, Австрии, Канаде, Норвегии, Словении, Швеции, Франции, Южной Африке, Японии и Соединенном Королевстве. Это притом что в мире этим заболеванием ежедневно инфицируется более одного миллиона человек.

Также, по оценкам ВОЗ, вероятность смерти людей инфицированных MRSA на 64% выше, если сравнивать с неустойчивой формой инфекции.

Кроме того, по данным доклада центра RANDEurope и KMPG, от устойчивых к антибиотикам инфекций в мире ежегодно умирает по меньшей мере 700 тысяч человек.

В США, по данным американского Центра по контролю и профилактике заболеваний, эта цифра ежегодно составляет 23 тысячи человек, в Евросоюзе показатель достигает 25 тысяч.

Зарождение «супербактерии»

Для того чтобы понять, почему микроорганизмы становятся устойчивыми к лекарствам, важно знать их природу. Бактерии представляют собой одну из первых форм жизни на Земле.

Ископаемые свидетельства датируются в ряде случаев началом периода архея — 3,5 миллиарда лет назад. Это обширная группа одноклеточных микроорганизмов.

И чтобы понять, как появляются «супербактерии», вспомним биологию, точнее, ее раздел, посвященный синтетической эволюции. Как известно, ее основополагающие принципы — естественный отбор, наследственность и изменчивость.

Согласно теории, новые признаки в строении организмов и их функциональных особенностях возникают в связи с изменчивостью, которая, в свою очередь, может быть определенной и неопределенной.

Первый тип изменчивости имеет место, когда условия окружающей среды оказывают одинаковое влияние на всех особей одного вида.

Примером такой изменчивости может послужить появление у зайцев белой шерсти, что ожидаемо в зимний период, поскольку это помогает быть более незаметными для хищников на снегу. Такой тип изменчивости затрагивает фенотипические особенности организма и не наследуется генетически.

Неопределенная изменчивость напрямую связана с изменениями генотипа организма, которые, как правило, нельзя предугадать. Пример — индивидуальные мутации, возникшие у отдельных особей одного вида.

Подобная изменчивость может проявляться вне зависимости от текущих условий окружающей среды и способна устойчиво передаваться потомству.

Вспомним и о наследовании приобретенных признаков, открытом еще французским биологом Жаном Батистом Ламарком, основной тезис которого заключается в том, что в ответ на изменения окружающей среды организмы способны меняться, приспосабливаться и передавать приобретенные изменения своему потомству.

По форме бактерии можно разделить на палочковидные — бациллы, сферические –кокки — и спиралевидные — спириллы.

По своему строению бактерии делятся на прокариот (доядерные), ДНК (дезоксирибонуклеиноваякислота) которых находится в определенной зоне клетки бактерии, и эукариот (ядерные) — их ДНК располагается в окруженном оболочкой ядре клетки.

Но, несмотря на разнообразие форм и строения, все бактерии объединяет одно важное свойство — способность передавать из поколения в поколение информацию с помощью своего генетического материала (ДНК), в том числе об устойчивости к лекарственным средствам.

Причем передача информации и проявление новых признаков, включая резистентность, могут происходить достаточно быстро, учитывая скорость размножения бактерий.

Многие из них путем деления способны давать потомство в течение 30 минут, а за сутки всего одна клетка может образовать 72 новых поколения, каждое из которых получает определенную информацию об устойчивости к лекарственным препаратам, если, конечно, прародитель сталкивался с тем или иным антимикробным средством.

В результате такой передачи информации через некоторое время может появиться поколение «супербактерий», которые являются невосприимчивыми ни к одному известному антибиотику, как в случае с 70-летней американкой из штата Невада.

В 2017 году женщина скончалась из-за полной резистентности бактерии Klebsiella pneumoniae к 26 видам известных антибиотиков. Все они оказались полностью бесполезны в борьбе с инфекцией.

Наука и устойчивость

В настоящее время наиболее известными средствами для борьбы с бактериями являются антибиотики, появлению которых мировое сообщество обязано Александру Флемингу, обнаружившему в 1928 году в ходе исследования, что обыкновенная плесень Penicillium, которая произрастает на лежалом хлебе, вырабатывает вещество, убивающее бактерии семейства Staphylococcaceae.

Так появился всем известный «пенициллин».

Сегодня в мире существует несколько тысяч натуральных и даже синтетических антибиотиков, объединенных в 16 классов. Например, пенициллин, относится к бета-лактамным препаратам.

Но из всего множества созданных ранее антибиотиков в настоящее время используется не более пяти процентов. Это напрямую связано с тем, что бактерии со временем выработали устойчивость к основной массе таких препаратов.

Все это побудило ВОЗ после проведенных масштабных исследований с 2014 года рассматривать проблему антимикробной резистентности на глобальном уровне и рекомендовать мировому научному сообществу приступить к поиску путей ее решения.

У ученых есть много идей, как справиться с проблемой: изучение механизмов возникновения антимикробной резистентности и системный мониторинг ее распространения, совершенствование мер по ограничению распространения и циркуляции возбудителей с антимикробной резистентностью).

Среди них есть и такой метод борьбы — научиться выращивать устойчивые виды бактерий и исследовать химические соединения, с помощью которых резистентность будет преодолена.

Эту задачу, в частности, решают ученые Северо-Восточного университета в Бостоне (США). Им удалось найти ряд соединений, к одному из которых в лабораторных условиях ни одна из исследуемых бактерий не способна была выработать устойчивость.

И если речь идет, например, о создании принципиально нового вида антибиотиков, то необходимо понимать, что на их разработку, прохождение всех этапов исследований и внедрение в массовое производство, по данным экспертов, уходит в среднем 10 лет.

Читайте также:  Горизонтальная теодолитная съемка способы съемки ситуации

В этой связи ученые также ищут способы решения глобальной проблемы на базе альтернативных антибиотикам противомикробных средств.

Если говорить о нашей стране, то в 2017 году для этих целей была утверждена «Стратегия предупреждения распространения антимикробной резистентности в Российской Федерации на период до 2030 года».

Она предусматривает меры по ограничению распространения устойчивости микроорганизмов к противомикробным препаратам, химическим и биологическим средствам.

В частности, стратегия интегрирует в себя план действий по разработке и внедрению альтернативных методов, технологий, средств профилактики и лечения заболеваний, включая создание биологических лекарственных препаратов на основе бактериофагов.

Вирусы против «супербактерий»

Бактериофаги — это не новый биологический вид. Научное сообщество приступило к их изучению задолго до появления всем известных антибиотиков. Первые научные сообщения о бактериофагах появились еще в 1920-х годах.

В 1921 году Ричард Брайонг и Джозеф Мэйсин, последователи Феликса Д’Эрреля, французского микробиолога и первооткрывателя бактериофагов, сделали доклад об успешном лечении инфекций кожи стафилококковым бактериофагом, а в 1922 году Д’Эррель в своем фундаментальном труде изложил результаты начального этапа изучения бактериофагов. И только в 1929 году Александр Флеминг открыл пенициллин.

Кроме того, в романе американского писателя Синклера Льюиса «Эроусмит» про молодого микробиолога, вышедшего в 1925 году, также говорилось о новом методе лечения: изобретенная ученым сыворотка губительно действовала на бактерии и спасла множество жителей Карибских островов от эпидемии бубонной чумы. По сути, речь шла о фаготерапии.

Что же такое бактериофаги? Они представляют собой внеклеточную форму жизни. Иными словами, это вирусы, размеры которых составляют в среднем от 20 до 200 нанометров (1 нанометр равен одной миллиардной части метра).

Так же, как и бактерии, эти вирусы представляют собой еще одну наиболее распространенную форму жизни на нашей планете. Они присутствуют буквально везде: в океане, почве, глубоководных источниках, питьевой воде, пище.

Причем бактериофаги способны размножаться исключительно в клетке-хозяине. Они могут иметь кубическую, нитевидную или форму головастиков.

Любая фаговая частица состоит из головки, содержащей нуклеиновую кислоту (ДНК или РНК), заключенную в белковую оболочку — капсид, —и хвостового отростка, состоящего из внутреннего стержня и сократительного чехла. Передвигается бактериофаг с помощью ножек-фибрилл, скрепленных в центре базальной пластиной.

Все бактериофаги имеют особенность, которой и пользуются ученые в ходе создания альтернативных антибактериальных препаратов — каждому типу бактерий свойственны собственные вирусы-фаги.

При этом бактериофаги, как снайперы, избирательно поражают только бактериальные клетки, а не всю микрофлору организма, в отличие от антибиотиков.

Происходит этот процесс в несколько этапов. Сначала бактериофаг распознает бактериальную клетку и прикрепляется к ее оболочке. Затем вирус-бактериофаг производит инъекцию своей нуклеиновой кислоты (генома) внутрь бактерии.

Далее происходит биосинтез белковых и нуклеиновых компонентов новых фаговых частиц на основе введенного генома. Еще один этап — соединение компонентов и формирование новых бактериофагов внутри бактерии.

И, наконец, процесс лизиса — распад бактериальной клетки и выход зрелых фагов.

Иными словами, эти неклеточные формы жизни с генетической программой способны проникать практически в любую вредоносную бактериальную клетку, размножиться и разрушить ее, не причиняя вреда остальной микрофлоре организма.

Подобный «литический цикл» продолжается до тех пор, пока не будет уничтожена последняя бактерия.

При неблагоприятных внешних условиях и малом количестве вредоносных клеток бактериофаги развиваются по лизогенному циклу: введенный геном существует внутри клетки пассивно — не размножаясь.

В таком состоянии «зараженная» фаговым геномом бактерия может проходить циклы деления. И когда такая бактерия попадет в благоприятные для размножения вируса условия, вновь активизируется литический цикл развития бактериофагов.

Кроме того, в отличие от антибиотиков, бактериофаги способны приобретать новые признаки естественным образом для борьбы с резистентными мутациями бактериальных клеток.

Отечественные разработки

Если говорить об успехах отечественных ученых в создании альтернативных антимикробных препаратов на основе бактериофагов, то еще благодаря сотрудничеству Феликса Д’Эрреля и грузинского микробиолога Георгия Элиавы в 1920-х годах в СССР был создан первый и единственный в мире научно-исследовательский центр бактериофагологии.

Уже в 1930-х бактериофаги советского производства впервые были использованы в экстренных ситуациях. Например, в 1938 году в нескольких пограничных с СССР районах Афганистана для профилактики эпидемии холеры бактериофаги давали местному населению, добавляли в колодцы и водоемы.

В результате на советской территории не было зарегистрировано ни одного случая заболевания.

Во времена Великой Отечественной войны также применялась фаговая терапия. Особое внимание уделялось разработке и производству бактериофагов, подавляющих кишечные инфекции — холеру, брюшной тиф, дизентерию и сальмонеллез. Всего за годы войны для фронта было изготовлено более 200 тысяч литров бактериофагов.

В наши дни в России разработкой и производством альтернативных лекарственных средств на основе бактериофагов в рамках Стратегии по борьбе с антимикробной резистентностью занимаются ученые НПО «Микроген» холдинга «Нацимбио» (входит в госкорпорацию «Ростех»).

В настоящий момент предприятие приступило к созданию всероссийской базы штаммовой коллекции бактериофагов для выпуска новых лекарственных противомикробных препаратов на их основе.

На сегодняшний день НПО «Микроген» разработаны 19 разновидностей альтернативных лекарственных противомикробных препаратов на основе бактериофагов против дизентерии, брюшного тифа, сальмонеллеза, гнойно-септических и других заболеваний.

В перспективе — выпуск первого в мире лекарственного препарата, содержащего бактериофаги в капсулах для лечения и профилактики заболеваний, вызываемых бактериями рода стафилококков (лат. Staphylococcus), стрептококков (Streptococcus), протеи (Proteus — P. vulgaris, P. mirabilis), клебсиеллы (Klebsiella pneumoniae), синегнойной (Pseudomonas aeruginosa) и кишечной (Escherichia coli) палочек.

Кроме того, в 2018 году предприятие приступило ко второй фазе клинических исследований бактериофага «Дифаг», направленного на борьбу с бактериями рода Acinetobacter baumannii (ацинетобактер) и Pseudomonas aeruginosa (синегнойная палочка), которые наиболее часто вызывают инфекционные заболевания у пациентов хирургических стационаров, отделений реанимации и интенсивной терапии.

Результаты наработок зарубежных и российских ученых по поиску новых антимикробных средств, безусловно, вселяют уверенность в том, что глобальная задача антимикробной резистентности в скором времени может быть решена.

А пока каждый из нас остается участником развернувшейся в XXI веке невидимой глазом битвы между человечеством и «супербактериями».

Александр Райков, специалист технологического отдела АО НПО Микроген​ Госкорпорации «Ростех»

Источник

Оцените статью
Разные способы