Защита от лазерного излучения
Лазерное излучение – это вынужденное (посредством лазера) испускание атомами вещества порций-квантов электромагнитного излучения. Само слово «лазер» происходит от английского laser – аббревиатура словосочетания «усиление света с помощью вынужденного излучения». Следовательно, лазер (оптический квантовый генератор) это генератор электромагнитного излучения оптического диапазона, основанный на использовании вынужденного (стимулированного) излучения.
Лазерная установка включает активную (лазерную) среду с оптическим резонатором, источник энергии ее возбуждения и, как правило, систему охлаждения.
Лазерные установки используются при обработке металлов (резание, сверление, поверхностная закалка и др.), в хирургии, для целей локации, навигации, связи и пр. Наибольшее распространение в промышленности получили лазеры, генерирующие электромагнитные излучения с /ушной волны 0,33; 0,49; 0,63; 0,69; 1,06; 10,6 мкм (микрометр).
Лазерное излучение характеризуют основные физические величины:
- длина волны,мкм;
- энергетическая освещенность (плотность мощности), Вт/см2, – отношение потока излучения, падающего на рассматриваемый небольшой участок поверхности, к площади этого участка;
- энергетическая экспозиция, Дж/см2, – отношение энергии излучения, определяемой на рассматриваемом участке поверхности, к площади этого участка;
- длительность импульса, с;
- длительность воздействия, с, – срок воздействия лазерного излучения на человека в течение рабочей смены;
- частота повторения импульсов, Гц, – количество импульсов за 1 с.
Лазеры классифицированы по 4 классам опасности. Наиболее опасны лазеры четвертого класса.
При работе с лазерными установками на работника оказывает воздействие прямое (непосредственно от лазера), рассеянное и отраженное лазерное излучение. Степень неблагоприятного воздействия зависит от параметров лазерного излучения, которое может привести к поражению глаз (сетчатки, роговицы, радужки, хрусталика), ожогам кожи, астеническим и вегетативно-сосудистым расстройствам.
Защита работников от лазерного излучения
Основными нормативными документами в области лазерной безопасности, к которым относятся СанПиН 5804-91 «Санитарные нормы и правила устройства и эксплуатации лазеров», ГОСТ 31581-2012. «Межгосударственный стандарт. Лазерная безопасность. Общие требования безопасности при разработке и эксплуатации лазерных изделий».
Защита работников от лазерного излучения осуществляется организационно-техническими, санитарно-гигиеническими и лечебно-профилактическими методами и средствами:
К организационно-техническим методам защиты работников от лазерного излучения относятся:
- выбор, планировка и внутренняя отделка помещений;
- рациональное размещение лазерных установок и порядок их обслуживания;
- организация рабочего места;
- применение средств защиты (ограждения, защитные экраны, блокировки, автоматические затворы, кожухи, защитные очки, щитки, маски и другие средства коллективной и индивидуальной защиты);
- ограничение времени воздействия излучения;
- назначение и инструктаж лиц, ответственных за организацию и проведение работ на лазерных установках;
- ограничение допуска к проведению работ;
- организация надзора за режимом работ;
- обучение обслуживающего персонала безопасным методам и приемам выполнения работ с лазерными установками;
- четкая организация противоаварийных работ и регламентация порядка ведения работ в аварийных ситуациях;
- установка зоны лазерной безопасности.
Санитарно-гигиеническими и лечебно-профилактическими методами и средствами защиты работников от лазерного излучения являются:
- контроль за уровнями вредных и опасных факторов на рабочих местах (периодический дозиметрический контроль лазерного излучения);
- контроль за прохождением персоналом предварительных и периодических медицинских осмотров.
Источник
Методы и средства защиты от лазерного излучения
Действие лазерного излучения бывает 4 видов:
тепловое (выделяется значительное количество тепла в малом объеме за короткий промежуток времени);
энергетическое (определяется высоким градиентом электрического поля, который может вызвать поляризацию молекул, резонансные и другие эффекты);
механическое (обусловлено расширением быстро нагревающихся тканей);
фотохимическое (проявляется при выцветании некоторых красителей).
Биологические эффекты делятся на первичные и вторичные. В первом случае происходят органические изменения непосредственно в облучаемых тканях, во втором – побочные явления, образующиеся в организме вследствие облучения.
Наиболее уязвимым для лазерного облучения является глаз. Излучение может вызвать разрушение сетчатки, изменение в прозрачных областях глаза, помутнение роговицы, поражение мышц хрусталика и потерю аккомодации. Все эти виды повреждений в конечном счете смогут привести к слепоте. Опасным для глаза является не только прямое излучение, но и отражение от стен, оборудования и т.п.
Лазерное излучение может также вызвать ожоги кожи, кровоизлияния во внутренних органах, изменения в центральной нервной системе. Могут наблюдаться различные функциональные сдвиги (изменения сердечно-сосудистой системы, эндокринных желез, повышение утомляемости, колебание артериального давления, повышенная общая утомляемость глаз, чувство тяжести и боли в глазах, головные боли, повышенная возбудимость, нарушение сна, потливость и пр.)
Согласно ГОСТ 15093-75 для лазеров с непрерывным режимом излучения нормируется энергетическая освещенность (облученность) Е (Вт/см 2 ), а для импульсных – энергетическая экспозиция H (Дж/см 2 ).
Методы и средства защиты могут быть как коллективными, так и индивидуальными и подразделяются на организационные, инженерно-технические, планировочные и ИСЗ.
Организационные меры направлены на правильную организацию работ, исключающую попадание людей в опасную зону. К работе допускаются только специально обученные лица, прошедшие медосмотр, инструктаж по проведению работ, предотвращению и ликвидации аварий. Доступ в помещения разрешен только непосредственно работающим в них лицам, подсобный персонал размещается вне этих помещений. Опасная зона должна быть четко обозначена и ограждена стойкими непрозрачными экранами. Обязателен контроль работ и медицинское наблюдение за состоянием персонала.
В ближней зоне где
P – мощность (энергия) излучения, Вт (Дж); — угол расхождения луча, град;R – расстояние от генератора, см.
Для дальней зоны где
— коэффициент ослабления излучения воздушной средой, см -1 .
Инженерно-технические мероприятия – создание безопасных лазерных установок путем уменьшения мощности лазера и надежной экранировкой установки, применение дистанционного управления с использованием телевизионных систем, автоматизации.
Правильная планировка позволяет использовать для защиты расстояния и направленности излучения. Для лазеров мощностью более 10 кВт и длиной более 10 м необходимо отдельное помещение. Установка должна размещаться так, чтобы луч лазера был направлен на капитальную неотражающую огнестойкую стену. Все поверхности окрашиваются в цвета с меньшим коэффициентом отражения. Не должно быть поверхностей, обладающих блесткостью. Обильное освещение (не менее 150 лк), коэффициент естественной освещенности не менее 1.5%, чтобы зрачок был меньше. Используются дистанционное управление, автоматическая сигнализация и блокировка.
Для защиты глаз применяются специальные очки из сине-зеленого стекла СЗС-22, оранжевого стекла ОС-14, а также фармацевтические средства, суживающие зрачки.
Кроме защиты от основных опасностей необходима защита от сопутствующих опасностей, источниками которых являются сама лазерная установка и обрабатываемые объекты. Для уменьшения загрязнения воздуха парами и аэрозолями испаряющихся веществ мишени, а также образующегося в воздухе озона в рабочих помещениях предусматривают специальную систему вентиляции. Применяют также необходимые меры защиты от высокого напряжения (защитные и предохранительные блокировки), воздействия электромагнитных полей (защитные экраны), шума (звукоизолирующие кожухи), жесткого рентгеновского излучения, ионизации воздуха, взрывов и пожаров. Выполнение мер защиты обеспечивает безопасность работ, проводимых с лазерными установками.
Определить суммарный уровень шума для 10 одинаковых по интенсивности источников, если уровень звукового давления одного источника 70 дБ.
Суммарный уровень шума равен
где Li – уровень звукового давления одного источника шума,
n – количество источников.
дБ.
Вопрос 23. Очистка выбросов от паро- и газообразных примесей методом адсорбции.
Вопрос 48. Определение ожидаемых уровней звукового давления в окружающей среде.
Вопрос 73. Методы контроля и приборы для измерения шума, инфразвука и вибрации.
ОЧИСТКА ВЫБРОСОВ ОТ ПАРО- И ГАЗООБРАЗНЫХ ПРИМЕСЕЙ МЕТОДОМ АДСОРБЦИИ
Метод адсорбции основан на физических свойствах некоторых твердых тел с ультрамикроскопической структурой селективно извлекать и концентрировать на своей поверхности отдельные компоненты из газовой смеси. В пористых телах с капиллярной структурой поверхностное поглощение дополняется капиллярной конденсацией.
Адсорбция подразделяется на физическую адсорбцию и хемосорбцию. При физической адсорбции молекулы газа прилипают к поверхности твердого тела под действием межмолекулярных сил притяжения (силы Ван-дер-Ваальса). Высвобождающаяся при этом теплота зависит от силы притяжения и по порядку значения (как правило, они находятся в пределах от 2 до 20 кДж/моль) совпадает с теплотой конденсации паров. Преимущество физической адсорбции – обратимость процесса, которая исключительно важна, если экономически выгодно рекуперировать адсорбируемый газ или адсорбент.
В основе хемосорбции лежит химическое взаимодействие между адсорбатом и адсорбируемым веществом. Действующие при этом силы сцепления значительно больше, чем при физической адсорбции соответственно и высвобождающаяся при хемосорбции теплота существенно больше и по порядку значения (от 20 до 400 кДж/моль) совпадает с теплотой реакции. Ввиду большой теплоты адсорбции энергия, необходимая для взаимодействия хемосорбированной молекулы с молекулой другого сорта, может быть существенно меньше энергии, необходимой для реакции молекул двух различных видов непосредственно в газовой фазе, т. е. поверхность твердого вещества может оказаться катализатором, увеличивающим скорость некоторых химических реакций. Процесс хемосорбции, как правило, необратим: при десорбции меняется химический состав адсорбата.
В качестве адсорбентов или поглотителей применяют вещества, имеющие большую площадь поверхности на единицу массы. Так, удельная поверхность активированных углей достигает 10 5 – 10 6 м 2 /кг. Их применяют для очистки газов от органических паров, удаления неприятных запахов и газообразных примесей, содержащихся в незначительных количествах в промышленных выбросах, а также летучих растворителей и целого ряда других газов. В качестве адсорбентов применяют также простые и комплексные оксиды (активированный глинозем, силикагель, активированный оксид алюминия, синтетические цеолиты или молекулярные сита), которые обладают большей селективной способностью, чем активированные угли. Однако их нельзя использовать для очистки очень влажных газов. Некоторые адсорбенты иногда пропитывают соответствующими реактивами, повышающими эффективность адсорбции, так как на поверхности адсорбента происходит хемосорбция.
Адсорбцию широко используют при удалении паров растворителя из отработанного воздуха при окраске автомобилей, органических смол и паров растворителей в системе вентиляции предприятий по производству стекловолокна и стеклотканей, а также паров эфира, ацетона и других растворителей в производстве нитроцеллюлозы и бездымного пороха. Адсорбенты также применяют для очистки выхлопных газов автомобилей; для удаления ядовитых компонентов (например, сероводород из газовых потоков), выбрасываемых в атмосферу через лабораторные вытяжные шкафы; для удаления радиоактивных газов при эксплуатации ядерных реакторов, в частности радиоактивного иода.
Источник
Противостоять свету: защита от лазерного оружия. Часть 5
Ранее мы рассмотрели, как развиваются лазерные технологии, какое лазерное оружие может быть создано для применения в интересах военно-воздушных сил, сухопутных войск и ПВО, военно-морского флота.
Теперь надо понять, можно ли от него защититься, и как. Часто раздаются высказывания о том, что достаточно покрыть ракету зеркальным покрытием или отполировать снаряд, но к сожалению, всё не так просто.
Обычное зеркало с алюминиевым покрытием отражает примерно 95% падающего излучения, причём его эффективность сильно зависит от длины волны.
Из всех материалов, показанных на графике, самый высокий коэффициент отражения у алюминия, который отнюдь не является тугоплавким материалом. Если при облучении маломощным излучением зеркало будет нагреваться незначительно, то при попадании мощного излучения материал зеркального покрытия быстро придёт в негодность, что приведёт к ухудшению его отражающих свойств и дальнейшему лавинообразному нагреву и разрушению.
При длине волны менее 200 нм эффективность зеркал резко падает, т.е. от ультрафиолетового или рентгеновского излучения (лазер на свободных электронах) такая защита не будет работать вообще.
Существуют экспериментальные искусственные материалы со 100%-ным отражением, но они работают только для определённой длины волны. Также зеркала могут покрываться специальными многослойными покрытиями, увеличивающими их отражающие способности до 99.999%. Но и этот метод работает только для одной длины волны, причём падающей под определённым углом.
Не стоит забывать о том, что условия эксплуатации вооружений далеки от лабораторных, т.е. зеркальную ракету или снаряд надо будет хранить в контейнере, заполненном инертным газом. Малейшее помутнение или пятно, например, от отпечатков рук, сразу ухудшат отражающую способность зеркала.
Выход из контейнера сразу подвергнет зеркальную поверхность воздействию окружающей среды – атмосферы и теплового воздействия. Если зеркальная поверхность не будет покрыта защитной плёнкой, то это сразу приведёт к ухудшению её отражающих свойств, а если её покрыть защитным напылением, то оно само будет ухудшать отражающие свойства поверхности.
Резюмируя вышесказанное, отметим: зеркальная защита не очень хорошо подходит для защиты от лазерного оружия. А что тогда подходит?
В какой-то степени поможет способ «размазывания» тепловой энергии лазерного луча по корпусу путем обеспечения вращательного движения летательного аппарата (ЛА), вокруг собственной продольной оси. Но этот способ подходит лишь для боеприпасов и в ограниченной степени для беспилотных летательных аппаратов (БПЛА), в меньшей степени он будет эффективен при облучении лазером в переднюю часть корпуса.
На некоторые типах защищаемых объектов, например, на планирующих авиабомбах, крылатых ракетах (КР), или противотанковых управляемых ракетах (ПТУР), атакующих цель при пролёте сверху, такой способ также применить не удастся. Невращающимися, по большей части, являются миномётные мины. Сложно собрать данные по всем невращающимся ЛА, но уверен, что их очень много.
В любом случае, вращение ЛА лишь незначительно снизит влияние лазерного излучения на цель, т.к. тепло, передаваемое мощным лазерным излучением корпусу будет передаваться на внутренние конструкции и далее по всем компонентам летательного аппарата.
Применение дымов и аэрозолей в качестве мер по противодействию лазерному оружию также имеет ограниченные возможности. Как уже говорилось в статьях серии, применение лазеров против наземной бронированной техники или кораблей возможно только при использовании против средств наблюдения, к защите которых мы ещё вернёмся. Прожечь корпус БМП/танка или надводного корабля лазерным лучом в обозримой перспективе нереально.
Разумеется, невозможно применить дымовую или аэрозольную защиту против ЛА. Из-за высокой скорости ЛА дым или аэрозоль всегда будут сдуваться назад встречным напором воздуха, у вертолётов их будет сдувать воздушный поток от винта.
Таким образом, защита от лазерного оружия в виде распыляемых дымов и аэрозолей может потребоваться лишь на легкобронированной технике. С другой стороны, танки и другая бронетехника зачастую и так оснащаются штатными системами постановки дымовых завес для срыва захвата комплексов вооружения противника, и в этом случае, при разработке соответствующих наполнителей, они могут применяться и для противодействия лазерному оружию.
Возвращаясь к защите оптических и тепловизионных средств разведки, можно предположить, что установка оптических фильтров, препятствующих прохождению лазерного излучения определённой длины волны, подойдёт только на начальном этапе для защиты от маломощного лазерного оружия, по следующим причинам:
— на вооружении будет стоять большая номенклатура лазеров различных производителей, работающих на разных длинах волн;
— фильтр, предназначенный для поглощения или отражения определённой длины волны, при воздействии мощного излучения скорее всего выйдет из строя, что приведёт либо к попаданию лазерного излучения на чувствительные элементы, либо выходу из строя самой оптики (помутнение, искажение изображения);
— некоторые лазеры, в частности, лазер на свободных электронах, могут изменять рабочую длину волны в широком диапазоне.
Защита оптических и тепловизионных средств разведки может осуществляться для наземной техники, кораблей и авиационной техники, путём установки защитных экранов с высоким быстродействием. В случае обнаружения лазерного излучения защитный экран за доли секунды должен закрыть объективы, но даже это не гарантирует отсутствие повреждений чувствительных элементов. Возможно, что широкое распространение лазерного оружия со временем потребует, как минимум дублирования средств разведки, работающих в оптическом диапазоне.
Если на крупных носителях установка защитных экранов и дублирующих средств оптической и тепловизионной разведки вполне реализуема, то на высокоточном оружии, особенно компактных размеров, это сделать гораздо сложнее. Во-первых, существенно ужесточаются массогабаритные требования к защите, во-вторых, воздействие лазерного излучения высокой мощности даже при закрытой заслонке, может вызвать, перегрев компонент оптической системы из-за плотной компоновки, что приведёт к частичному или полному нарушению её работы.
Какими же способами можно эффективно защитить технику и вооружение от лазерного оружия? Основных способов два – это абляционная защита и конструктивная теплоизолирующая защита.
Абляционная защита (от латинского ablatio – отнятие, унос массы) основана на уносе вещества с поверхности защищаемого объекта потоком горячего газа и/или на перестройке пограничного слоя, что в совокупности значительно уменьшает теплопередачу к защищаемой поверхности. Иными словами, поступающая энергия тратится на нагрев, расплав, и испарение защищающего материала.
В настоящий момент абляционная защита активно используется в спускаемых модулях космических аппаратов (КА) и в соплах реактивных двигателей. Наибольшее применение получили обугливающиеся пластмассы на основе фенольных, кремнийорганических и других синтетических смол, содержащих в качестве наполнителей углерод (в том числе графит), двуокись кремния (кремнезем, кварц), найлон.
Абляционная защита – одноразовая, тяжелая и объёмная, поэтому использовать её на летательных аппаратах многоразового использования (читай не всех пилотируемых, и большей части беспилотных ЛА) нет смысла. Единственное её применение – это на управляемых и неуправляемых снарядах. И здесь основной вопрос в том, какой толщины должна быть защита для лазера мощностью, например, 100 кВт, 300 кВт и т.д.
На космическом корабле «Аполлон» толщина защиты лежит в диапазоне от 8 до 44 мм для температур от нескольких сотен до нескольких тысяч градусов. Где-то в этом диапазоне будет лежать и потребная толщина абляционной защиты от боевых лазеров. Легко представить, как она повлияет на массогабаритные характеристики, а, следовательно, и на дальность, маневренность, массу боевой части (БЧ) и другие параметры боеприпаса. Абляционная теплозащита также должна выдерживать перегрузки при запуске и маневрировании, соответствовать нормам сроков и условий хранения боеприпасов.
Под вопросом находятся неуправляемые боеприпасы, поскольку неравномерное разрушение абляционной защиты от лазерного излучения может изменить внешнюю баллистику, вследствие чего боеприпас отклонится от цели. Если абляционная защита уже где-то применяется, например, в гиперзвуковых боеприпасах, то придётся наращивать её толщину.
Другой способ защиты – конструктивное покрытие или исполнение корпуса несколькими защитными слоями из тугоплавких материалов, устойчивых к внешним воздействиям.
Если проводить аналогию с космическими аппаратами, то можно рассмотреть тепловую защиту многоразового КА «Буран». На участках, где температура поверхности составляет 371 – 1260 градусов Цельсия, применялось покрытие, состоящее из аморфного кварцевого волокна 99,7 %-ной чистоты, к которому добавляется связующее – коллоидная двуокись кремния. Покрытие изготавливается в виде плиток двух типоразмеров толщиной от 5 до 64 мм.
На внешнюю поверхность плиток наносится боросиликатное стекло, содержащее специальный пигмент (белое покрытие на основе окиси кремния и блестящей окиси алюминия), для получения малого коэффициента поглощения солнечной радиации и высокого коэффициента излучения. На носовом обтекателе и носках крыла аппарата, где температуры превышают 1260 градусов, применялась абляционная защита.
Необходимо учитывать, что при длительной эксплуатации может быть нарушена защита плиток от влаги, что приведёт к утрате теплозащитой своих свойств, поэтому она не может напрямую быть использована в качестве противолазерной защиты на многоразовых ЛА.
В настоящий момент разрабатывается перспективная абляционная теплозащита с минимальным износом поверхности, обеспечивающая защиту летательных аппаратов от температуры до 3000 градусов.
Группа учёных из Института Ройса при Университете Манчестера (Великобритания) и Центрального южного университета (Китай) разработала новый материал с улучшенными характеристиками, который без структурных изменений выдерживает температуру до 3000°C. Это керамическое покрытие Zr0.8Ti0.2C0.74B0.26, которое накладывается на матрицу углерод-углеродного композита. По своим характеристикам новое покрытие значительно превосходит самую лучшую высокотемпературную керамику.
Химическая структура термостойкой керамики сама по себе выполняет роль защитного механизма. При температуре 2000°C материалы Zr0.8Ti0.2C0.74B0.26 и SiC окисляются и превращаются в Zr0.80T0.20O2, B2O3 и SiO2, соответственно. Zr0.80Ti0.20O2 частично расплавляется и формирует относительно плотный слой, а оксиды с низкой температурой плавления SiO2 и B2O3 испаряются. При более высокой температуре 2500°C кристаллы Zr0.80Ti0.20O2 сплавляются в более крупные образования. При температуре 3000°C формируется почти абсолютно плотный внешний слой, в основном состоящий из Zr0.80Ti0.20O2, титаната циркония и SiO2.
В мире ведутся разработки и специальных покрытий, предназначенных для защиты от лазерного излучения.
Представитель Народно-освободительной армии Китая еще в 2014 году заявлял, что американские лазеры не представляют особой опасности для китайской военной техники, обшитой специальным защитным слоем. Остаются только вопросы, от лазеров какой мощности, защищает это покрытие, и какую имеет толщину и массу.
Наибольший интерес представляет покрытие, разработанное американскими исследователями из Национального института стандартов и технологий и университета Канзаса – аэрозольный состав на основе смеси углеродных нанотрубок и специальной керамики, способный эффективно поглощать свет лазеров. Нанотрубки нового материала однородно поглощают свет и передают тепло в близлежащие области, снижая температуру в точке контакта с лучом лазера. Керамические высокотемпературные соединения обеспечивают защитному покрытию высокую механическую прочность и стойкость по отношению к разрушениям от высокой температуры.
В процессе испытаний тонкий слой материала нанесли на поверхность меди и после высыхания сфокусировали на поверхности материала луч длинноволнового инфракрасного лазера, лазера, который используется для резки металла и других твердых материалов.
Анализ собранных данных показал, что покрытие успешно поглотило 97.5 процентов энергии луча лазера и без разрушения выдержало уровень энергии в 15 кВт на квадратный сантиметр поверхности.
По данному покрытию возникает вопрос: на испытаниях защитное покрытие было нанесено на медную поверхность, которая сама по себе является одной из самых сложных материалов для обработки лазером, из-за её высокой теплопроводности, неясно как оно поведёт себя такое защитное покрытие с другими материалами. Также возникают вопросы о её максимальной температурной стойкости, стойкости к вибрационно-ударным нагрузкам, воздействию атмосферных условий и ультрафиолета (солнце). Не указано время, в течении которого проводилось облучение.
Ещё один интересный момент: если двигатели ЛА также будут покрыты веществом с высокой теплопроводностью, то от них равномерно будет нагрет весь корпус, что максимально демаскирует ЛА в тепловом спектре.
В любом случае, характеристики вышеуказанной аэрозольной защиты будут находиться в прямой зависимости с размерами защищаемого объекта. Чем больше защищаемый объект и площадь покрытия, тем больше энергии может быть рассеяно по площади и отдано в виде теплового излучения и охлаждения набегающим потоком воздуха. Чем меньше защищаемый объект, тем толще придётся делать защиту, т.к. малая площадь не позволит отвести достаточно тепла и будут перегреты внутренние конструктивные элементы.
Применение защиты от лазерного излучения, неважно абляционной или конструктивной теплоизолирующей, может переломить тенденцию к уменьшению размеров управляемых боеприпасов, существенно уменьшить эффективность как управляемых, так и не управляемых боеприпасов.
Все несущие поверхности и органы управления – крылья, стабилизаторы, рули, придётся делать из дорогих и сложно обрабатываемых тугоплавких материалов.
Отдельно возникает вопрос по защите радиолокационных средств обнаружения. На экспериментальном космическом аппарате «БОР-5» испытывалась радиопрозрачная теплозащита – стеклопластик с кремнеземным наполнителем, но её теплозащитные и массогабаритные характеристики мне найти не удалось.
Пока неясно, может ли в результате облучения мощным лазерным излучением обтекателя радиолокационных средств разведки, пусть и с защитой от теплового излучения, возникнуть высокотемпературное плазменное образование, препятствующее прохождению радиоволн, вследствие чего цель может быть потеряна.
Для защиты корпуса возможно будет применяться комбинация нескольких защитных слоёв – теплостойкий-малотеплопроводный изнутри и отражающий-теплостойкий-высокотеплопроводный снаружи. Также возможно, что поверх защиты от лазерного излучения, будут наноситься материалы для обеспечения малозаметности, которые не смогут противостоять лазерному излучению, и должны будут восстанавливаться после получения повреждений от лазерного оружия в случае, если сам ЛА выжил.
Можно предположить, что совершенствование и широкое распространение лазерного оружия, потребуют обеспечения противолазерной защитой всех имеющихся боеприпасов, как управляемых, так и неуправляемых, а также пилотируемых и беспилотных летательных аппаратов.
Внедрение противолазерной защиты неизбежно приведёт к росту стоимости и массогабаритных характеристик управляемых и неуправляемых боеприпасов, а также пилотируемых и беспилотных летательных аппаратов.
В заключение можно упомянуть об одном из разрабатывающихся способов активного противодействия лазерной атаке. Компания Adsys Controls, расположенная в Калифорнии, разрабатывает защитную систему Helios, которая должна сбивать наведение лазера противника.
При наведении боевого лазера противника на защищаемый аппарат Helios определяет его параметры: мощность, длину волны, частоту импульсов, направление и дальность до источника. В дальнейшем Helios мешает лазерному лучу противника фокусироваться на цели, предположительно путём наведения встречного низкоэнергетического лазерного луча, который сбивает с толку систему наведения противника. Детальные характеристики системы Helios, стадия её разработки и её практическая работоспособность пока неизвестны.
Источник