- Основные этапы эволюции биосферы: таблица и краткая информация
- Содержание:
- Этапы эволюции биосферы: таблица с краткой информацией
- Основные этапы развития биосферы: таблица с современными данными
- Способ зарождения биосферы креационизм абиогенез биогенез ответ таблица
- гипотеза стационарного состояния
- креационизм
- Гипотеза панспермии
- Гипотеза биохимической эволюции Опарина–Холдейна (гипотеза абиогенеза)
- ПРОБЛЕМЫ ТЕОРИИ АБИОГЕНЕЗА
- ПРОБЛЕМА САМОВОСПРОИЗВЕДЕНИЯ И ГИПОТЕЗА РНК-МИРА
- ЭКОЛОГИЯ ПЕРВЫХ ОРГАНИЗМОВ
- Гипотеза самозарождения жизни
- «Клеточность»
- АВТОТРОФНОСТЬ
- ЯДЕРНОСТЬ
- КОЛОНИАЛЬНОСТЬ
- МНОГОКЛЕТОЧНОСТЬ
- ПОЛИМОРФИЗМ
- Эволюция многоклеточных животных
- ВЕНДСКИЙ ПЕРИОД
- КЕМБРИЙСКИЙ ПЕРИОД
- СИЛУР
- ДЕВОН
- КАРБОН (КАМЕННО-УГОЛЬНЫЙ ПЕРИОД)
- МЕЗОЗОЙ
- КАЙНОЗОЙ
- основные ароморфозы
- Хронология происхождения основных групп животных
- Доказательство общности происхождения человека и животных
- Происхождение человека
- Предпосылки антропогенеза
- ПРОИСХОЖДЕНИЕ ПРЯМОХОЖДЕНИЯ
- ДВИЖУЩИЕ СИЛЫ АНТРОПОГЕНЕЗА
- ЭТАПЫ АНТРОПОГЕНЕЗА
- ЭТАПЫ СТАНОВЛЕНИЯ ЧЕЛОВЕКА
- Характеристика современного этапа эволюции человека:
Основные этапы эволюции биосферы: таблица и краткая информация
Содержание:
Этапы эволюции биосферы изучал советский исследователь В. И. Вернадский. Главная идея учёного: живые организмы изменили облик Земли и сами постоянно меняются. Основные этапы эволюции биосферы обусловлены её развитием под влиянием абиотических и биотических факторов.
Этапы эволюции биосферы: таблица с краткой информацией
Биосфера — одна из геосфер, глобальная экосистема Земли или плёнка жизни. Не имеет чётко очерченной границы, представляет собой области суши, Мирового океана, нижние части атмосферы.
Эволюция биосферы (таблица по Вернадскому)
Этапы | Движущие силы | Проявления |
Образование плёнки жизни | Геологические, химические, климатические процессы | Возникновение жизни |
Видоизменение | Усложнение, развитие живых организмов. | Появление эукариотической клетки, возникновение многоклеточных растений и животных, усложнение организмов |
Антропогенез | Появление человека и развитие человеческого общества | Переход биосферы в ноосферу |
В.И. Вернадский назвал первые два этапа стадией биогенеза, что означает возникновение жизни из неживой материи. На следующей стадии — ноогенеза — происходит эволюция разума. Биосфера изменяется под воздействием разумной деятельности человека, возникает ноосфера.
Основные этапы развития биосферы: таблица с современными данными
Биосфера простирается примерно от 5 км ниже поверхности до 60 км над поверхностью нашей планеты, заселена организмами и занята продуктами их жизнедеятельности. Но так было не всегда.
Биологической эволюции предшествовали физико-химические процессы:
- Зарождение Солнца.
- Образование газо-пылевого (протопланетного) облака.
- Возникновение низкотемпературной Протоземли.
- Появление земной коры.
- Разогревание твёрдой оболочки, выход газов.
- Образование атмосферы без кислорода.
- Формирование Мирового океана.
Возраст нашей планеты составляет 4,5 млрд лет. Эволюция биосферы происходит последние 3,8-4 млрд лет.
Выполнению задания «Назовите этапы появления биосферы» поможет изучение таблицы:
Этап, возраст | Процессы | Результат |
Биохимическая эволюция на основе синтеза простых органических молекул (3,5-4,6 млрд лет) | Живые организмы использовали органику первичного океана. Возникновение биотического круговорота с участием водорода, паров воды, метана, аммиака. | Формирование биосферы. Появление миксотрофов, хемотрофов, первых фотосинтезирующих организмов без выделения кислорода. |
Биогенез (2,5-3,5 млрд лет) | Синтез крупных органических молекул под действием геофизических факторов. Косное вещество Земли начало преобразовываться в живое вещество. | Появление многоклеточных организмов с более сложным механизмом фотосинтеза. Выделение кислорода в атмосферу. Возникновение аэробных организмов. |
Антропогенез (начало 1,5-3 млн лет назад) | Появление человека, формирование общества в процессе трудовой деятельности. | Новая фаза эволюция, обусловленная превращением деятельности людей в мощную силу, преобразующую природу. |
Ноогенез | Появление разумно управляемой социально-природной системы, в которой осуществляется рациональное природопользование, происходит устойчивое развитие. | Ноосфера. |
Зарождение жизни произошло в Мировом океане. Это был медленный абиогенный синтез органических соединений. Первыми живыми существами были анаэробные доядерные организмы, способные к гетеротрофному питанию. Далее произошло усложнение клеток, появление у водных обитателей симбионтов, паразитов, формирование организменной среды жизни. Живые существа заселили сушу.
Предмет «Биология» в школе и тема, посвящённая изучению эволюции биосферы, дают общее представление об этапах развития жизни на Земле. В высшем учебном заведении биологического профиля более подробно изучаются физические явления и химические реакции, происходившие в период становления Земли, эволюционные изменения живых организмов.
Источник
Способ зарождения биосферы креационизм абиогенез биогенез ответ таблица
Существует несколько гипотез о происхождении жизни на Земле. Их можно разделить на
Биогенез — происхождение живого от живого (гипотеза панспермии, стационарного состояния).
Абиогенез — происхождение живого от неживого (гипотеза самозарождения, биохимическая эволюция)
гипотеза стационарного состояния
Земля и жизнь на ней никогда не возникали, а существуют вечно.
Виды живых организмов могут вымирать или изменять свою численность, но не могут меняться.
Доказательство: из теории биогенеза как утверждения о том, что живые организмы могут происходить только от других живых организмов, неизбежно следует единственный логичный вывод: жизнь существовала вечно. Другими словами, если проследить цепочку порождающих друг друга живых организмов в прошлое, то она должна тянуться бесконечно.
креационизм
Многообразие форм органического мира является результатом сотворения их Богом.
Отрицает изменение видов и их эволюцию.
Практически все религиозные учения утверждают, что человек и все другие живые существа созданы Богом. Виды сразу были совершенными и всегда останутся такими, какими они были созданы. Никаких доказательств, что это так, не существует. Это вопрос веры.
Креационистами было большинство ученых до XIX в.
Основоположник систематики К. Линней считал, что все виды растений и животных существуют со времени «сотворения мира» и созданы Богом независимо друг от друга.
Французский анатом и палеонтолог Ж. Кювье считал, что в течение истории Земли происходили обширные катастрофы, или катаклизмы, после которых опустошенные места заселялись организмами, пережившими катастрофу в отдаленных районах (теория катастроф).
Доказательство креационизма: целесообразность устройства живых организмов и их сообществ, хорошая приспособленность к условиям обитания.
Некоторые современные последователи креационизма используют существование очень сложных, разнообразных молекулярно-генетических процессов у живых существ как аргумент в пользу неслучайности их появления. Другие же согласны с существованием эволюционного процесса, но считают, что само начало эволюции было связано с актом творения.
Гипотеза панспермии
Жизнь занесена из космоса
Не предлагает решения проблемы происхождения жизни во Вселенной, а объясняет только появление ее на нашей планете занесением из космоса.
Доказательство панспермии: некоторые микроорганизмы, а особенно их споры, могут сохранять жизнеспособность при очень жестких воздействиях (например, очень низких температурах).
Однако до настоящего времени при изучении метеоритов никаких форм жизни на них не найдено.
Гипотеза биохимической эволюции Опарина–Холдейна (гипотеза абиогенеза)
Возникновение жизни на нашей планете произошло в несколько этапов эволюции:
- Абиогенный синтез простых органических соединений.
- Образование биополимеров.
- Установление связей между биополимерами — образование коацерватов.
- Возникновение мембран, отделяющих первые подобия живых организмов — протобионтов — от окружающей среды.
- Возникновение обмена веществ и энергии с окружающей средой.
- Появление способности к самовоспроизведению.
- Формирование экологических связей и образование первых экосистем.
Гипотеза абиогенеза основывается на данных современной науки о формировании Земли примерно 4,5 миллиарда лет назад.
Гипотеза Опарина–Холдейна сформировалась и получила первые экспериментальные подтверждения в 1950 — 1960-е гг. В настоящее время на основе современных данных гипотеза абиогенеза претерпела значительные изменения, была расширена и дополнена. В частности, большинство ученых сегодня считают, что возникновение самовоспроизведения предшествовало формированию мембран и полноценного обмена веществ или происходило параллельно с ними. Самовоспроизведение предполагает сохранение свойств в ряду поколений организмов, лежит в основе естественного отбора (который, безусловно, уже действовал среди этих древних систем) и эволюции в целом.
После появления нашей планеты как твердого тела и ее постепенного остывания происходила конденсация водяного пара в первичной атмосфере Земли. Дождевая вода с растворенными в ней веществами накапливалась в углублениях рельефа.
В первичной атмосфере в значительных количествах присутствовал углекислый газ, сероводород, метан, аммиак, пары воды и почти полностью отсутствовал кислород (следовательно, не было озонового слоя). Земля была подвержена жесткому ультрафиолетовому излучению Солнца.
Среда в целом была насыщена энергией. Для образования или разрыва химических связей были важны следующие источники:
- жесткое ультрафиолетовое излучение;
- электрические разряды;
- естественная радиоактивность;
- солнечный ветер;
- вулканическая деятельность.
Американские исследователи Стэнли Миллер и Гарольд Юри в 1953 году в экспериментах показали, как в далеком прошлом могли появляться биологически важные химические соединения. Они подобрали разные газы в соотношении, близком к составу древней атмосферы, и пропускали через эту смесь искровые разряды. В результате получались такие биологически важные соединения, как муравьиная и молочная кислоты, мочевина и аминокислоты (глицин, аланин, глутаминовая кислота, аспарагиновая кислота). Последующие экспериментаторы, варьируя условия и совершенствуя методы анализа, расширили набор продуктов в таком синтезе. Ими были получены многие аминокислоты, пуриновые основания — аденин и гуанин (они получаются, если в смесь газов добавить синильную кислоту), четырех- и пятиуглеродные сахара. В 2008 году опыт повторили и выяснили, что образуется 22 различных аминокислоты.
Миллер и Юри основывались в своих экспериментах на представлениях 1950-х гг. о возможном составе земной атмосферы. В настоящее время взгляды на этот вопрос изменились. В частности, считается, что концентрация СО не могла быть такой высокой, при этом было показано, что даже небольшие изменения условий и состава газовой смеси приводят к очень существенным изменениям эффективности процесса синтеза органики. Применение новых аналитических методов к древнейшим земным горным породам позволило уточнить состав древней атмосферы Земли. Он оказался очень похож на современные атмосферы Венеры и Марса — 98% СО2, 1,5% N2 и малые доли других газов, в основном аргона и SO2. Из такой атмосферы в аппарате Миллера не получается никакой органики. Для получения органики из CO2 необходим восстановитель, и ученые занялись его поисками.
Воды на поверхности и непосредственно под поверхностью Земли насыщались подобными веществами ( «первичный бульон»). Состав и концентрация органических веществ зависели от окружающих условий и, вероятно, были разными в разных частях поверхности Земли. Часть образовавшихся органических веществ разрушалась. Однако другая часть могла концентрироваться, например, в пористых минералах, образуя полимеры. В экспериментах показано, что нагревание смеси аминокислот приводит к образованию достаточно длинных полипептидов со случайной последовательностью мономеров. Некоторые из этих полипептидов обладают каталитической активностью.
Жирные кислоты, соединяясь со спиртами, могли образовывать липидные пленки на поверхности водоемов.
Связи между разными биополимерами и другими веществами могли образоваться при изоляции небольших объемов биополимеров, например при образовании пузырьков из липидных пленок ( коацерватов) либо из пептидов (микросферы).
Роль коацерватов исследовалась Александром Ивановичем Опариным и его английским коллегой Джоном Холдейном. Микросферам были посвящены исследования американского ученого Сиднея Фокса.
ПРОБЛЕМЫ ТЕОРИИ АБИОГЕНЕЗА
- Проблема сложности самовоспроизводящейся системы. Сложность живых клеток огромна. Даже самые простые бактерии имеют геном из более миллиона нуклеотидов, кодирующий свыше тысячи белков. Для работы этого генома требуются специальные молекулярные машины синтеза белка (рибосомы), синтеза ДНК (репликативная вилка), энергоснабжения (как минимум 12 ферментов гликолиза, а обычно еще и электрон-транспортная цепь на мембране) и средства регуляции и управления (транскрипционные факторы и сигнальные белки). Сложность такой системы очень высока, а более простых самостоятельно воспроизводящихся систем, чем клетка, биология не знает. Вирусы не в счет — для их размножения требуется сложная живая клетка. Дарвиновский естественный отбор может порождать все более сложные системы, но для этого они с самого начала должны быть способны к репликации. Если естественный отбор начинается только с появлением первой клетки, то для ее образования случайным путем требуется гигантское время — на много порядков больше возраста Вселенной.
- Проблема хиральной чистоты.
Все живые системы содержат только определенные оптические изомеры аминокислот и сахаров (L-аминокислоты и D-сахара). Противоположные изомеры встречаются, но редко и в особых случаях (например, в клеточной стенке бактерий). Неживые же системы таким свойством не обладают. Это свойство живых систем называется хиральной чистотой. Она поддерживается за счет пространственного соответствия молекул биологических катализаторов — ферментов — только одному из оптических изомеров. Большинство химических реакций в неживых системах не являются стереоселективными, то есть в них участвуют оба оптических изомера с одной и той же вероятностью. Известно очень мало абиогенных процессов, которые стереоселективны, то есть в них участвует преимущественно один оптический изомер, но и они не дают достаточного обогащения системы нужными изомерами. Однако в последние годы открыто множество процессов, которые приводят к обогащению тем или иным оптическим изомером — см. далее в п.3. - Проблема отсутствия восстановителя в первичной атмосфере (см. выше об опыте Миллера-Юри). По новым данным о составе первичной атмосферы, в ней практически не содержалось молекулярного водорода и CО, и описанные Миллером и Юри синтезы идти не могли.
Во многих современных успешных экспериментах по абиогенному синтезу органики берут в качестве исходного вещества формальдегид. Он очень реакционноспособен и дает множество биологически значимых продуктов.
Откуда мог взяться формальдегид? Он мог образовываться при восстановлении углекислого газа на неорганических катализаторах. Например, горячая вулканическая лава, содержащая самородное железо, при контакте с влажной СО2-атмосферой образует формальдегид. Водный раствор гидроксида железа (II) производит ту же реакцию при освещении ультрафиолетом.
Сегодня существуют две подробно разработанные теории абиогенного синтеза органики, связывающие восстановление СО2, энергетический обмен и особенности содержания ионов металлов в живом веществе.
Первая, предполагающая происхождение жизни в «железо-серном мире», на подводных геотермальных источниках, предложена немецким биофизиком Карлом Ваштерхаузером.
Другой сценарий абиогенного синтеза органики на геотермальных источниках предложен Мулкиджаняном. Он следует из способности сульфидов цинка и марганца к восстановлению разных веществ на свету («цинковый мир»).
Как происходил дальнейший синтез сложной биогенной органики? Учёные проводят множество экспериментов, стремясь подобрать условия для этих процессов, возможные на древней Земле. Большую роль в современных исследованиях играет реакция Бутлерова, открытая еще в 1865 году. В этой реакции водный раствор формальдегида (СH2O) с добавлением Ca(OH)2 или Mg(OH)2 при небольшом нагревании превращается в сложную смесь сахаров. Эта реакция оказалась автокаталитической, то есть продукты являются катализаторами. Также катализирует реакцию свет. В определенных условиях реакция Бутлерова позволяет решить проблему хиральной чистоты, приводя к появлению только определенных оптических изомеров сахаров. Для этого добавляют силикаты либо гидроксиапатит (фосфат кальция) — соединения, в которых нет недостатка в земной коре. Также к синтезу хирально чистых D-сахаров приводит добавление комплекса аминокислоты L-пролина с ионом цинка.
Большой проблемой считался долгое время синтез нуклеотидов, так как условия синтеза его отдельных компонентов, а также 4 разных нуклеотидов оказались слабо совместимы. Однако в 2008 году Сандерлендом был осуществлен синтез нуклеотидов как целого, а не в виде отдельных компонентов, при этом получены все 4 варианта.
ПРОБЛЕМА САМОВОСПРОИЗВЕДЕНИЯ И ГИПОТЕЗА РНК-МИРА
Как пробионты приобрели способность к саморепродукции, т.е. способность к воспроизводству структуры макромолекул? Точно сказать невозможно, однако есть гипотезы, объясняющие формирование самовоспроизводящихся систем на основе нуклеиновых кислот.
Современные ученые по-прежнему активно занимаются проблемой абиогенного синтеза и достигли значительных успехов. В частности, активно изучается автокаталитический синтез сахаров (реакция Бутлерова), открыт процесс синтеза целого нуклеотида (раньше образование нуклеотидов было неприступной крепостью — все его компоненты получить в сходных условиях не удавалось). Получив нуклеотиды, легко перейти к сборке первых нуклеиновых кислот, а эти молекулы уже содержат в себе потенциал к самовоспроизведению. Вероятно, первые самовоспроизводящиеся системы были построены на основе РНК.
Открытие в 1982 г. каталитической активности некоторых молекул РНК (рибозимов) позволяет предполагать, что именно молекулы РНК были первыми биополимерами, в которых способность к репликации сочеталась с ферментативной активностью. Искусственно получены самовоспроизводящиеся РНК (правда, небольшой длины), т. е. РНК, способные катализировать синтез своих копий. Более того, именно РНК играет важную роль во всех основополагающих и, как предполагается, древнейших процессах в клетке. Так, при биосинтезе белка на рибосомах каталитическая роль принадлежит именно рибосомной РНК. Безбелковая рибосома в настоящее время не существует — белки являются неотъемлемой частью этого комплекса, но она вполне могла существовать в прошлом.
Все эти факты говорят в пользу того, что именно РНК когда-то выполняла все биологически значимые функции в первых живых системах, а уже затем часть функций перешла к ДНК (хранение наследственной информации) и белкам (катализ, структурные функции и др.). Это предположение называется гипотезой РНК-мира и пользуется широкой поддержкой среди современных ученых.
Структура самовоспроизводящейся РНК
ЭКОЛОГИЯ ПЕРВЫХ ОРГАНИЗМОВ
Можно предполагать, что на начальных этапах развития жизни на Земле появилось очень большое разнообразие протобионтов, но все они являлись анаэробными гетеротрофами, т. е. обладали бескислородным типом дыхания и поглощали готовые органические вещества (первичную органику). Уже на этом этапе могло появиться хищничество и другие формы связей между видами, т.е. первичные сообщества. В начале биологической эволюции источником питания, вероятно, служили запасы органических веществ, созданных абиогенным путем. Когда эти запасы истощились, то преимущества в размножении должны были получить те организмы, у которых появились возможности автотрофного питания, и хищники, их поедающие.
Однако следует отметить, что самые древние бесспорные остатки живых существ принадлежат фотосинтезирующим, то есть автотрофным организмам (компоненты хлорофилла, строматолиты — окаменевшие цианобактериальные маты и т. п.). Самым древним сообществом, оставившим следы в палеонтологической летописи, является именно цианобактериальный мат. Современные маты включают в себя микробов-фотосинтетиков, хемосинтетиков и гетеротрофов, и есть данные, указывающие на наличие этих компонентов и в древних матах.
Спил строматолита Современные строматолиты, Австралия
Распространение пробионтов, да и просто биологически важных полимеров и олигомеров ограничивалось жестким ультрафиолетовым излучением в отсутствие озонового экрана.
Возникновение оксигенного фотосинтеза, то есть фотосинтеза с выделением кислорода, невозможно точно датировать, но существуют палеонтологические свидетельства наличия цианобактерий 3,4 млрд лет назад. Сначала кислород не накапливался в атмосфере, а расходовался на окисление различных компонентов земной коры, например двухвалентного железа. Затем началось медленное повышение концентрации кислорода, которое привело к так называемой кислородной революции — смене характера всей атмосферы с восстановительного на окислительный. Резкое ускорение накопления кислорода в атмосфере датируется примерно 2,3 млрд лет назад. Молекулярный кислород является ядом для анаэробных организмов, а многие обитатели древней Земли были именно такими. Многие ученые считают, что оксигенация атмосферы была первой глобальной экологической катастрофой и привела к вымиранию многих организмов. Выжившие приспособились, выработав системы защиты от токсического действия кислорода, а некоторые научились использовать его для окисления органических веществ — клеточного дыхания, что позволило получить дополнительную энергию по сравнению с бескислородным обменом веществ. Поэтому аэробы (существа, дышащие кислородом) получили конкурентное преимущество по сравнению с анаэробами. Именно от таких организмов произошло большинство современных видов, в том числе и эукариоты, включающие в себя растения, животные, грибы и условную (сборную) группу простейших.
Считается, что возникновение современных типов многоклеточных было невозможно раньше достижения определенной концентрации кислорода в среде.
Накопление кислорода в атмосфере привело к формированию озонового экрана, что позволило жизни выйти на сушу.
Гипотеза самозарождения жизни
Возникновения жизни абиогенным путем в далеком прошлом
Гипотеза существовала параллельно с креационизмом. Ее сторонники считали, что условия, необходимые для возникновения жизни, имеются и в настоящее время.
Доказательство: появление личинок мух в гниющем мясе; мышей из сухарей и тряпки (опыты Ван Гельмонта).
Эксперименты, в которых самозарождение не происходило после кипячения среды и запаивания сосуда, не являлись убедительными, т. к. считалось, что кипячение убивает «жизненную силу».
Франческо Реди в 1668 году опубликовал результаты опытов, опровергающих теорию самозарождения. Он взял два сосуда с питательной средой (мертвый червь). Один из сосудов он закрыл материей, а другой оставил открытым.
Через некоторое время в открытом сосуде появились личинки мух, т. к. мухи проникли в сосуд и отложили яйца. В закрытом сосуде «самозарождения» не произошло.
Позже, в начале XVIII в., Лаздзаро Спалланцани решил проверить результаты английского исследователя Джона Нидхема о самозарождении микроорганизмов в бараньей подливке. Он брал склянки с семенным отваром, некоторые из которых закрывал пробкой. другие же запаивал на огне горелки. Одни он кипятил по целому часу, другие же нагревал только несколько минут. По прошествии нескольких дней Спалланцани обнаружил, что в тех склянках, которые были плотно запаяны и хорошо нагреты, никаких «маленьких животных нет» — они появились только в тех бутылках, которые были неплотно закрыты и недостаточно долго прокипячены, причём вероятнее всего, проникли туда из воздуха или же сохранились после кипячения, а вовсе не зародились сами по себе. Таким образом, Спалланцани не только доказал несостоятельность концепции самозарождения, но также выявил существование мельчайших организмов, способных переносить непродолжительное — в течение нескольких минут — кипячение. Между тем, Нидхем объединился с графом Бюффоном, и вместе они выдвинули гипотезу о производящей силе— некоем животворящем элементе, который содержится в бараньем бульоне и семенном отваре и способен создать живые организмы из неживой материи. Спалланцани убивает Производящую силу когда кипятит целыми часами свои склянки, утверждали они, и совершенно естественно, что маленькие зверюшки не могут возникнуть там, где нет этой силы. В последующих опытах Спалланцани удалось доказать несостоятельность этих гипотез.
Решающими оказались эксперименты известного французского биолога и химика Луи Пастера. Он присоединил к колбе S-образную трубку со свободным концом. Споры микроорганизмов оседали на изогнутой трубке и не могли проникнуть в питательную среду. Хорошо прокипяченная питательная среда оставалась стерильной, в ней не обнаруживалось зарождения жизни, несмотря на то что доступ воздуха был обеспечен. В результате ряда экспериментов Пастер доказал справедливость теории биогенеза и окончательно опроверг теорию спонтанного зарождения.
Именно Пастеру медицина обязана рождением антисептики и асептики, открывших дорогу современной хирургии.
Колба с S-образным горлышком.
По современным представлениям, жизнь на нашей планете появилась примерно 3, 5 млрд. лет назад.
«Клеточность»
Первыми (в Архее) появились одноклеточные организмы, в клетках которых не было сформированного ядра: археи и бактерии. Питались они готовыми органическими веществами, т.е. были гетеротрофами.
Рис. Археи: пирококкус и термококкус
Рис. Бактерии: стрептококки и бациллы
АВТОТРОФНОСТЬ
Следующая ступень ( ароморфоз) развития жизни на Земле — появление фотосинтетических пигментов в клетках прокариот. Эти прокариоты — цианобактерии (сине-зеленые водоросли, цианеи) — сами синтезировали органические вещества из неорганических ( процесс фотосинтеза), т.е. были автотрофами.
Рис. Цианобактерии: колония ностока под микроскопом и цианобактерии в аквариуме
Самые ранние свидетельства жизни на Земле — окаменевшие продукты жизнедеятельности сине-зеленых водорослей — строматолиты . Самые ранние относятся к архею (примерно 3, 5 млрд. лет назад).
ЯДЕРНОСТЬ
Следующий ароморфоз произошел на границе Архея и Протерозоя (2,6 — 2,7 млрд. лет назад): появление в клетках ядра. Организмы, в клетках которых есть ядро, называются эукариотами.
Рис. Сравнение прокариотической (бактериальной) и эукариотической клетки
После формирования клеточного ядра, все эукариотические организмы разделились на две ветви: эукариотических автотрофов (предки растений) и эукариотических гетеротрофов (предки грибов и животных).
КОЛОНИАЛЬНОСТЬ
Следующий шаг: появление колониальных одноклеточных эукариот.
Рис. Колониальный автотроф — вольвокс; колониальный гетеротроф — инфузория кархезиум
Биологический смысл колониальности:
- более эффективная защита от врагов;
- защита внутренних клеток колонии от неблагоприятных факторов внешней среды:
- более активная добыча питательных веществ.
МНОГОКЛЕТОЧНОСТЬ
Следующим ароморфозом было происхождение многоклеточности. Этот ароморфоз произошел в конце Протерозоя. Большинство зоологов считают, что многоклеточность происходит из колониальности: изначально морфологически одинаковые особи колонии со временем могли приобретать определенные различия в строении и функциях ( полиморфизм), становясь более зависимыми от всей группы (макроорганизма).
ПОЛИМОРФИЗМ
- специализация клеток и более эффективное выполнение функций;
- увеличение размеров: выгодно при защите от хищников и при добыче пищи;
- более быстрое передвижение;
- увеличение сроков жизни благодаря регенерации.
Существует несколько теорий происхождения многоклеточности: теория фагоцителлы Мечникова, теория гастреи Геккеля и др.
Эволюция многоклеточных животных
Первыми многоклеточными животными были радиально-симметричные организмы: губки и кишечнополостные. Все они вели прикрепленный образ жизни.
Рис. Радиальная симметрия и радиально-симметричные животные
Далее появились двустороннесимметричные активно передвигающиеся животные: плоские и круглые черви. Они имели головной конец тела, на котором концентрировались органы чувств.
Рис. Двусторонняя (билатеральная) симметрия и плоский червь планария
ВЕНДСКИЙ ПЕРИОД
Примерно 650 млн. лет назад Землю населяли мягкотелые существа — вендобионты — первые известные многоклеточные животные: губки, медузы, плоские черви. Они были мягкотелые, поэтому остатки их плохо сохранились.
Рис. Вендский период (630 млн. лет назад)
Рис. Современный кольчатый червь Platynereis и загадочное ископаемое животное Spriggina (вендский период) — недавняя находка палеонтологов, ставящая под сомнение происхождение кольчатых червей
КЕМБРИЙСКИЙ ПЕРИОД
В кембрии (540 млн. лет назад) появились хищные организмы и средства нападения и защиты: челюсти, панцири, раковины. Многие животные имели твердый наружный скелет, поэтому сохранилось большое количество остатков кембрийской фауны. В связи с этим, ученые назвали этот период «кембрийским взрывом».
Рис. Кембрийский период (540 млн. лет назад)
От древних ресничных червей произошли кольчатые черви. Древние морские многощетинковые кольчатые черви, вероятно, послужили основой для возникновения типов членистоногих, моллюсков и хордовых.
Расцвет трилобитов — ближайших предков ракообразных.
Появление гигантских хищных ракообразных — аномалокарид (лаггания, аномалокарис, хардия)
Рис. Остатки трилобита и реконструкция лаггании
Рис. Так ученые реконструировали хардию — нового представителя аномалокарид, удивительных хищников кембрия (рис. © M. Collins)
Рис. Кембрийские блатерально-симметричные животные
Кембрийская Виваксия — возможный предок кольчатых червей
Первые рыбоподобные позвоночные животные — остракодермы — появились в конце кембрия. Они были покрыты панцирем из костных щитков и не имели челюстей. До наших дней дожили только паразитические представители бесчелюстных — миноги и миксины.
СИЛУР
Период известен массовым вымиранием, в результате которого исчезло около 60 % видов существовавших в ордовике морских организмов.
Появлись акантоды (колючкозу́бые рыбы) и челюстноротые рыбы — костнопанцирные и беспанцирные.
Рис. Акантода климатиус
Увеличвается видовое разнообразие прямораковинных головоногих моллюсков и граптолитов Брахиоподы (плеченогие) увеличили свое разнообразие в три раза, в силуре к ним относится 8% всех родов.
Рис. Гигантский камероцерас и ракоскорпион
Рис. Планктонный граптолит Loganograptus и брахиопода
Megamastax amblyodus из позднего силура, костная рыба длиной до метра, на 2014 год считается первым позвоночным хищником, специализирующимся на поедании других позвоночных.
Рис. Megamastax amblyodus и его предполагаемые жертвы — панцирные бесчелюстные
ДЕВОН
Процветают бесчелюстные панцирные остракодермы (цефаласписы и др.).
Появились и быстро завоевали водные пространства головоногие моллюски аммониты, позже вымершие вместе с динозаврами в меловой период.
Рис. Цефаласпис и аммонит
В девоне появились первые челюстноротые. Для большинства этих животных характерны наличие двусторонней симметрии, третьего зародышевого листка (мезодермы), полости тела, наружного (членистоногие) или внутреннего (хордовые) твердого скелета, прогрессирующая способность к активному передвижению, обособление переднего конца тела с ротовым отверстием и органами чувств, постепенное совершенствование центральной нервной системы.
От первых челюстноротых возникли лучеперые и кистеперые рыбы. Кистеперые имели в плавниках опорные элементы, из которых позже развились конечности наземных позвоночных. Из жаберных дуг образовались подвижные челюсти, а из кожных складок — плавники. Формирование поясов парных грудных и брюшных конечностей способствовало увеличению маневренности движений.
Двоякодышащие и кистеперые рыбы посредством плавательных пузырей, имеющих связь с пищеводом и снабженных системой кровеносных сосудов, могли дышать атмосферным кислородом.
Рис. Эволюция амфибий
От кистеперых рыб берут начало древние земноводные — стегоцефалы (в н.в. устаревшее название) — сборная группа предков амфибий и рептилий.
Выход на сушу первых позвоночных животных был обеспечен преобразованием плавников в конечности наземного типа, а воздушных пузырей — в легкие.
КАРБОН (КАМЕННО-УГОЛЬНЫЙ ПЕРИОД)
От стегоцефалов берут свое начало истинно наземные животные — рептилии. Освоение суши пресмыкающимися обеспечили сухие ороговевшие покровы, внутреннее осеменение, богатые желтком яйцеклетки, защитные оболочки яиц, предохраняющие эмбрионы от высыхания и других воздействий среды.
В течение карбона появились много новых видов беспозвоночных: наземные брюхоногие моллюски, морские раковинные головоногие моллюски белемниты и огромное количество членистоногих. Многие из них были гигантских размеров, по сравнению с современными представителями.
Появились котилозавры и звероподобные рептилии.
Рис. Каменно-угольный период
Рис. Белемниты и их окаменевшие раковины — «чертовы пальцы»
Рис. Представитель котилозавров —диадект
МЕЗОЗОЙ
В триасе (225 млн. лет назад) среди рептилий выделилась группа динозавров. Они господствовали в течение более 160 миллионов лет и вымерли в конце мелового периода (около 65 млн. лет назад).
Предполагают, что динозавры были промежуточным звеном между рептилиями и млекопитающими и совмещали в себе признаки обеих групп. Например, они имели строение черепа как у ящериц, зубы в отдельных ячейках, как у крокодилов, но трубчатые кости, строение суставов пальцев и крестцовой кости подобно млекопитающим. Передвигались динозавры на вертикально расположенных конечностях, опираясь только на пальцы (пальцехождение), подобно большинству современных млекопитающих, и отличались от большинства других рептилий, чьи конечности были расположены по бокам туловища. Их вертикальное положение позволило динозаврам при движении легко дышать и вероятнее всего повышало их уровень выносливости и активности.
Рис. Мезозойская эра — эпоха динозавров
Первы е м лекопитающие появились в триасовый период мезозойской эры.
Позднее, также от одной из ветвей пресмыкающихся, произошли птицы. Археоптерикс долгое время считался переходным звеном между рептилиями и птицами. В настоящее время доказано, что он являлся слепой ветвью крылатых рептилий.
Для птиц и млекопитающих характерны такие черты, как теплокровность, четырехкамерное сердце, одна дуга аорты (создает полное разделение большого и малого кругов кровообращения), интенсивный обмен веществ. Данные черты обеспечили расцвет этих групп организмов.
Рис. Один из предполагаемых предков птиц Microraptor gui
Рис. Археоптерикс — слепая ветвь крылатых рептилий
В конце мезозоя появляются плацентарные млекопитающие, для которых прогрессивными основными особенностями стали появление плаценты и внутриутробного развития плода, вскармливание детенышей молоком, развитая кора головного мозга.
КАЙНОЗОЙ
Кайнозойская эра началась 66 млн. лет назад (эта граница проведена по массовому вымиранию видов в конце мелового периода) и продолжается в настоящее время.
Это эпоха расцвета млекопитающих. Большинство современных отрядов млекопитающих произошли от древних насекомоядных.
Рис. Кайнозойская эра
В начале кайнозойской эры от насекомоядных обособился отряд приматов, эволюция одной из ветвей которого привела к возникновению человека.
Рис. Предки человека
основные ароморфозы
ароморфоз | таксон |
появление ядра | одноклеточные эукариоты |
трехслойные животные (плоские и круглые черви) | |
вторичнополостные животные (кольчатые черви) | |
образование пятипалых конечностей и легких | плацентарные млекопитающие |
Хронология происхождения основных групп животных
период | группа животных |
Архейская эра | одноклеточные животные |
девон | ихтиостеги и стегоцефалы — первые земноводные |
карбон | расцвет амфибий, появление рептилий |
пермь | расцвет рептилий, появление зверозубых ящеров |
первые млекопитающие |
Особенности эволюции животного мира
- прогрессивное развитие многоклеточности и, как следствие, специализации тканей и всех систем органов;
- свободноподвижный образ жизни, который определил выработку различных механизмов поведения, а также относительную независимость онтогенеза от колебаний факторов внешней среды. Развивались и совершенствовались механизмы внутренней саморегуляции организма;
- возникновение твердого скелета: наружного у ряда беспозвоночных — иглокожих, членистоногих; внутреннего у позвоночных. Преимущества внутреннего скелета заключаются в том, что он не ограничивает увеличение размеров тела.
- прогрессивное развитие нервной системы стало основой для возникновения системы условных рефлексов и совершенствования поведения.
Эволюция животных привела к развитию группового адаптивного поведения, что стало основанием для появления человека.
Доказательство общности происхождения человека и животных
- Анатомическое сходство: общность плана строения органов и систем органов.
- Эмбриональное сходство: на ранних этапах зародыш человека трудно отличить от зародышей других позвоночных животных. В возрасте 1,5 — 3 месяцев у него имеются жаберные щели, а позвоночник оканчивается хвостом. Очень долго сохраняется сходство зародышей человека и обезьяны. Специфические (видовые) человеческие особенности возникают лишь на самых поздних стадиях развития.
- Рудименты — органы, находящиеся в редуцированном состоянии вследствие утраты функций. Рудиментов в теле человека около 90: копчиковая кость (хвостовые позвонки); складка в уголке глаза (остаток мигательной перепонки); тонкие волосы на теле (остаток шерсти); отросток слепой кишки — аппендикс и др.
- Атавизмы — органы, утраченные в процессе эволюции предковыми формами, но появившиеся у отдельного организма (одной особи): хвостатость, обильный волосяной покров на лице и теле, многососковость, сильно развитые клыки и др.
Происхождение человека
Антропогенез — раздел антропологии, изучающий происхождение человека.
По строению и физиологическим особенностям наиболее близкие родственники человека — человекообразные обезьяны: шимпанзе, горилла, орангутанг.
О близком родстве между человеком и человекообразными обезьянами свидетельствуют сходные детали строения:
- общий характер телосложения;
- редукция хвоста;
- хватательная кисть с плоскими ногтями и противопоставленным большим пальцем;
- форма глаз и ушей;
- зубная формула: одинаковое число резцов, клыков и коренных зубов;
- физиологическое сходство: общие группы крови, болезни и паразиты (например, головная вошь); генетическое сходство: диплоидное число хромосом (2n) у всех человекообразных обезьян — 48, у человека — 46. Различие в хромосомных числах обусловлено тем, что хромосома человека образована слиянием двух хромосом, гомологичных таковым у шимпанзе;
- сходство поведенческих реакций.
Однако между человеком и человекообразными обезьянами есть и коренные отличия:
- прямохождение и связанные с этим особенности строения: S-образный позвоночник с отчетливыми шейными и поясничными изгибами, низкий расширенный таз, уплощенная в спинно-брюшном направлении грудная клетка, сводчатая стопа с массивным приведенным большим пальцем, особенности мускулатуры и расположения внутренних органов;
- кисть человека способна выполнять самые разнообразные и высокоточные движения;
- череп человека более высокий и округленный, не имеет сплошных надбровных дуг; мозговая часть преобладает над лицевой, лоб высокий, челюсти слабые, с маленькими клыками, подбородочный выступ отчетливо выражен;
- мозг человека примерно в 2,5 раза больше мозга человекообразных обезьян. У человека сильно развита кора больших полушарий мозга, в которых расположены важнейшие центры психики и речи.
Предпосылки антропогенеза
Предполагается, что общими предками человекообразных обезьян и человека были стадные узконосые обезьяны, жившие на деревьях в тропических лесах.
ПРОИСХОЖДЕНИЕ ПРЯМОХОЖДЕНИЯ
ДВИЖУЩИЕ СИЛЫ АНТРОПОГЕНЕЗА
На ранних этапах антропогенеза решающую роль играли биологические факторы эволюции, в дальнейшем основной движущей силой стали социальные факторы.
Биологические факторы | Социальные факторы |
---|---|
мутационная изменчивость | мышление |
изоляция | звуковая сигнализация (на поздних этапах — речь) |
дрейф генов | использование орудий труда |
популяционные волны | общественный образ жизни |
борьба за существование | использование огня |
естественный отбор | творчество |
ЭТАПЫ АНТРОПОГЕНЕЗА
Период (млн лет назад) | Этап | Характеристика |
60 | первые приматы | |
25 | дриопитеки — общие предки 2 семейств: понгид, или антропоморфных обезьян (гиббон, горилла, орангутанг, шимпанзе), и гоминид (людей) |