Способ замены плоскостей проекций плоскопараллельное перемещение

Метод плоскопараллельного перемещения

В начертательной геометрии метод плоскопараллельного перемещения используется, как правило, для определения натуральных величин плоских фигур, отрезков и углов.

Свойства плоскопараллельного перемещения:

  1. При перемещении любой фигуры параллельно плоскости проекции, проекция фигуры на эту плоскость остается неизменной.
  2. При перемещении точки параллельно горизонтальной плоскости проекции, её фронтальная проекция движется по прямой, параллельной оси X. На рисунке ниже точки C» и D», следуя этому свойству, заняли положение C»1 и D»1.
  3. При перемещении точки параллельно фронтальной плоскости проекции, её горизонтальная проекция движется по прямой, параллельной оси X.

Рассмотрим перевод произвольно расположенного отрезка CD в положение, параллельное горизонтальной плоскости проекций П2.

  • Используя первое свойство параллельного перемещения, на любом свободном месте чертежа строим отрезок C’1D’1 = C’D’.
  • По линиям связи определяем недостающие проекции C»1 и D»1. Стрелками показано перемещение точек C» и D» параллельно оси X в соответствии со вторым свойством рассматриваемого метода.

Следующий рисунок иллюстрирует перевод отрезка MN в проецирующее положение по отношению к фронтальной плоскости проекций П2. В общем случае для решения подобной задачи необходимо дважды воспользоваться методом плоскопараллельного перемещения.

  • После первого преобразования отрезок MN займет положение параллельно плоскости П1. Сначала строится M»11 = M»N» на произвольном месте чертежа, после чего по линиям связи находятся недостающие проекции M’1 и N’1.
  • Второе преобразование заключается в параллельном переносе горизонтальной проекции отрезка M’1N’1 в положение M’2N’2, перпендикулярное оси X. После этого точки M»2 = N»2 определяются по линиям связи.

Определение натуральной величины треугольника

Рассмотрим порядок плоскопараллельного перемещения треугольника ABC с целью определения его натуральной величины.

  1. Через точку С треугольника ABC проводим горизонталь CD. Находим её недостающие проекции.
  2. Переводим ABC в положение, перпендикулярное фронтальной плоскости проекций. Для этого строим C’1D’1 = C’D’ перпендикулярно оси X. В соответствии с первым свойством плоскопараллельного перемещения достраиваем треугольник A’1B’1C’1 = A’B’C’. По линиям связи определяем точки A»1, B»1, C»1.
  3. Перемещаем проекцию A»111 треугольника ABC в положение A»222, параллельное оси X, соблюдая равенство A»222 = A»111. По линиям связи определяем точки A’2, B’2, C’2. Теперь треугольник ABC расположен параллельно горизонтальной плоскости проекций и проецируется на неё в натуральную величину A’2B’2C’2.

Определение расстояния между параллельными прямыми

Расстояние между двумя параллельными прямыми равно длине перпендикуляра, опущенного из произвольной точки первой прямой на вторую прямую. Рассмотрим, как указанное расстояние определяется на практике с помощью метода плоскопараллельного перемещения.

Путем двух последовательных преобразований прямые a и b переводятся в положение, перпендикулярное горизонтальной плоскости. Таким образом, они проецируются на неё в точки A’2 и B’2, расстояние между которыми является искомым. Показанные на рисунке величины d1 и d2 являются вспомогательными для выполнения построений согласно свойствам плоскопараллельного перемещения.

Источник

57. Способ плоскопараллельного перемещения

Способ плоскопараллельного перемещения основан на том, что при параллельном переносе геометрического тела относительно плоскости проекций проекция его на эту плоскость не меняет своей формы и размеров, хотя и меняет положение. При этом если точка перемещается в плоскости, параллельной П1, то ее фронтальная проекция изображается в виде прямой, параллельной оси П21. Если же точка перемещается в плоскости, параллельной П2, то ее горизонтальная проекция изображается в виде прямой, параллельной той же оси.

Читайте также:  Сколько способов рассадить 4 человека за столом

На рис. 107 показан комплексный чертеж прямой АВ. Прямая не параллельна ни одной из плоскостей проекций. Требуется с помощью плоскопараллельного перемещения задать ей такое положение, чтобы она была параллельна одной из плоскостей проекций, например П2. Через произвольную точку А1, проводим прямую l1 параллельную оси П21, и от этой точки на прямой откладываем отрезок, равный

А1В1. Из точки А1проводим вертикальную линию связи, а из точки AT, — горизонтальную линию, на пересечении которых и будет новое положение фронтальной проекции А2‘. Аналогично проведем вертикальную линию связи из точки В1до пересечения с горизонтальной линией, проведенной из точки B2. Новое положение фронтальной проекции точки В получим на пересечении этих линий в точке В2‘.

После преобразования чертежа горизонтальная проекция прямой АВ стала параллельна плоскости П2, а значит, спроецировалась она на эту плоскость в натуральную величину.

Применяя метод плоскопараллельного перемещения, можно решать многие задачи, связанные с определением натуральной величины отрезков, углов, плоских фигур, а также заданием им нужного положения. Однако он связан с изменением положения геометрической фигуры в пространстве. В практике же встречаются задачи, при решении которых при преобразовании комплексного чертежа удобнее оставить положение проецирующего тела неизменным, а изменить положение плоскостей проекций.

Источник

Лекция 4. Способы преобразования ортогонального чертежа

4.1. Способ перемены плоскостей проекций

Чаще всего геометрические объекты расположены относительно плоскостей проекций в общем положении, и при решении задач для достижения поставленной цели необходимо выполнять много построений.

Количество построений можно значительно сократить, если геометрические элементы будут расположены в частном положении относительно плоскостей проекций.

Существуют два основных способа преобразования чертежа, при которых:

  1. Объект остаётся неподвижным, при этом меняется аппарат проецирования;
  2. Условия проецирования не меняются, но изменяется положение объекта в пространстве.

К первому способу относится способ перемены плоскостей проекций.

Ко второму – способ вращения (вращение вокруг линии уровня и вращение вокруг проецирующей прямой); способ плоскопараллельного перемещения.

Рассмотрим наиболее часто используемые способы при решении задач.

Способ перемены плоскостей проекций или способ введения дополнительных плоскостей проекций (ДПП) позволяет перейти от заданной системы плоскостей проекций к новой системе, более удобной для решения той или иной задачи.

Рассмотрим положение точки А относительно известной системы плоскостей проекций π2⊥π1 (Рисунок 4.1, а и б).

Введём π4⊥π1, при этом получим новую систему двух взаимно перпендикулярных плоскостей. Положение точки А на эпюре будет в этом случае задано проекциями А1 и А4.

Правила перемены плоскостей проекций:

  1. Новая плоскость проекций вводится перпендикулярно, по крайней мере, одной из заданных на чертеже плоскостей проекций;
  2. ДПП располагается относительно проецируемого объекта в частном положении, удобном для решения поставленной задачи;
  3. Новую плоскость совмещаем вращением вокруг новой оси проекций с плоскостью, которой она перпендикулярна на свободное место так, чтобы проекции не накладывались друг на друга.
Читайте также:  Способы охвата рынка примеры


а б

Рисунок 4.1 – Способ перемены плоскостей проекций

  1. На чертеже новая проекция геометрического элемента находится на линии связи, перпендикулярной новой оси проекций:
  1. Расстояние от А4 до π14 равно расстоянию от А2 до π21, так как величина этих отрезков (отмечены ○) определяет расстояние от точки А до плоскости проекций π1.

При решении задачи необходимо заранее обдумать, как расположить новую плоскость проекций относительно заданных геометрических объектов (прямой, плоскости и др.), и как на чертеже провести новую ось проекций, чтобы в новой системе плоскостей заданные объекты заняли бы частные положения по отношению к новой плоскости проекций.

Упражнение

1. Спроецировать отрезок общего положения АВ в точку.

  1. Введём ДПП π4//А1В1 и π4⊥π1 (Рисунок 4.2). В новой системе двух взаимно перпендикулярных плоскостей проекций π14 отрезок АВспроецируется на π4 в натуральную величину и по этой проекции можем определить угол наклона отрезка к плоскости проекций π1

Упражнение

2. Дана плоскость общего положения – σ, заданная треугольником АВС (Рисунок 4.3).

Определить истинную величину треугольника.

  1. Введём ДПП π4⊥σ и π4⊥π1, для чего построим горизонталь в плоскости треугольника и проведём новую ось проекций π14⊥g1согласно теореме о перпендикуляре к плоскости. На π4 плоскость σ спроецируется в прямую, что означает σ⊥πp4.
  2. Введём ДПП π5//σ (π45//А4В4С4) и π4⊥π5. На π5 проекция А5В5С5 – есть истинная величина треугольника.

4.2. Способ вращения

Сущность способа вращения состоит в том, что положение системы плоскостей проекций считается неизменным в пространстве, а положение проецируемого объекта относительно неподвижных плоскостей изменяется.

Из сравнения сущности обоих способов видно, что решение задач, которые требуют применения преобразования ортогонального чертежа, может быть выполнено любым из этих способов, результат при этом должен получиться одинаковым. Основа выбора того или иного способа – рациональность решения.

Вращение заданных элементов будем осуществлять вокруг проецирующей прямой, то есть прямой, перпендикулярной какой-либо плоскости проекций, при этом все точки заданных элементов поворачиваются в одну и ту же сторону на один и тот же угол (Рисунок 4.4, а и б). Ось вращения и объект вращения составляют твёрдое тело.

А – точка в пространстве;

О – центр вращения точки А;

АО – радиус вращения


а б

Рисунок 4.4 – Способ вращения вокруг прямой, перпендикулярной π2

Точка описывает в пространстве окружность радиусом АО. Плоскость окружности перпендикулярна оси вращения (σ⊥m).

Так как m⊥π2 , то σ//π2, следовательно, σ⊥π1, ⇒ σ1m1, и поэтому σ проецируется на π1 в виде прямой, перпендикулярной проекции оси вращения, а на π2 траектория вращающейся точки проецируется в виде окружности с центром О2m2.

Пусть ось вращения m⊥π1 (Рисунок 4.5, а и б). Плоскость окружности σ⊥m.


а б
Рисунок 4.5 – Вращение вокруг прямой, перпендикулярной π1
\left.\begin\sigma\parallel\pi_1\\\sigma\perp \pi_2\\\end\right\> npu\;m\perp\pi_1\Longrightarrow\sigma_2\perp m_2
Свойства проекций

  1. На плоскость проекций, перпендикулярную оси вращения, траектория вращающейся вокруг этой оси точки проецируется без искажения, то есть в окружность с центром, совпадающим с проекцией оси вращения на эту плоскость и радиусом, равным расстоянию от вращаемой точки до оси вращения.
  2. На плоскость проекций, параллельную оси вращения, траектория вращающейся точки проецируется в отрезок, перпендикулярный проекции оси вращения на эту плоскость.
  3. На плоскость проекций, перпендикулярную оси вращения, проекция вращаемого объекта своих размеров и формы не меняет.
Читайте также:  21 операция наложения гастроэнтероанастомоза по способу вельфлера

Упражнение

Дано : отрезок общего положения – АВ.

Определить : способом вращения истинную величину отрезка и углы наклона его к плоскостям проекций.

1. Выберем ось вращения m⊥π1 и проходящую через точку В (Рисунок 4.6).

На плоскости проекций π2 проекция траектории перемещения точки А – прямая,

A_2 \overline\perp m_2\;u\;A_2\overline\parallel\pi_2/\pi_1

На плоскости проекций π1 проекция траектории перемещения точки А – окружность радиусом |А1В1|.

Повернем отрезок до положения, параллельного плоскости проекций π2. Получим натуральную величину отрезка.

Угол наклона отрезка АВ к плоскости проекций π1 будет угол
\alpha=\angle\widehat_2> .

Для того, чтобы определить угол наклона АВ к плоскости проекций π2, надо ввести новую ось вращения перпендикулярно π2 и повторить построения.

4.3. Определение истинной величины треугольника способом вращения

Пусть плоскость σ задана треугольником. Необходимо определить истинную величину треугольника (Рисунок 4.7).

Одним поворотом вокруг оси, перпендикулярной к плоскости проекций, истинную форму треугольника получить нельзя (так же как и введением одной ДПП).

Вращая вокруг оси m, перпендикулярной π1 можно расположить плоскость ΔАВС⊥π2 (а вращая вокруг оси n⊥π2 можно расположить плоскость ΔАВС⊥π1).


Рисунок 4.7

  1. Положим σ’ должна быть перпендикулярна π2. Для чего построим CD – горизонталь h плоскости σ. Введём первую ось вращения m⊥π1, например, через точку С.
  2. Повернём треугольник вокруг m до положения, когда
    \overline\perp\pi_2\Rightarrow\overline_1\overline_1\perp\pi_2/\pi_1
    На основании 3-го свойства, новая горизонтальная проекция треугольника \overline по величине должна равняться A1B1C1, а фронтальная проекция треугольника будет представлять отрезок.
  3. Введём вторую ось вращения n⊥π2 через точку \overline_2 . Повернём фронтальную проекцию \overline в новое положение \overline<\overline\overline\overline>\parallel\pi_2/\pi_1 . На π1 получим треугольник \overline<\overline\overline\overline> , равный истинной величине треугольника АВС.

4.4. Задачи для самостоятельной работы

Двумя способами преобразования ортогонального чертежа:

1. Определить расстояние от точки D до отрезка АВ – общего положения (Рисунок 4.8).


Рисунок 4.8

2. Определить расстояние между двумя параллельными прямыми общего положения (АВ//CD) (Рисунок 4.9).


Рисунок 4.9

3. Определить расстояние между двумя скрещивающимися прямыми, заданными отрезками АВ и CD (Рисунок 4.10).


Рисунок 4.10

4. Построить недостающую проекцию точки D при условии, что задана σ=ΔАВС – общего положения и первая проекция точки D1, Dотстоит от плоскости σ на 30 мм (Рисунок 4.11).


Рисунок 4.11

5. Дан отрезок АВ – общего положения. Ось вращения не проходит через АВ (Рисунок 4.12). Определить способом вращения истинную величину АВ.


Рисунок 4.12

6. Задана прямая общего положения m и точка А вне прямой. Построить плоскость, проходящую через точку А и перпендикулярную прямой m (Рисунок 4.13).


Рисунок 4.13

Источник

Оцените статью
Разные способы