- Метод замены переменной
- Метод замены переменной – это такой способ решения, при котором в уравнение (или неравенство) вводится новая переменная, в результате чего оно становится более простым.
- Примеры использования метода замены переменной
- Обмен значений переменных: разбор популярных способов решения известной задачи с IT-собеседований
- Авторизуйтесь
- Обмен значений переменных: разбор популярных способов решения известной задачи с IT-собеседований
- Ошибочная реализация
- С использованием буфера
- Арифметика
- Сложение / вычитание
- Умножение / деление
- Вычитание / Сложение
- Недостатки арифметического метода
- Битовые операции
- Замена переменных в уравнениях (ЕГЭ 2022)
- Замена переменных — коротко о главном
- Степенная замена \( \displaystyle y=<
^>\) - Степенная замена в общем виде
- Дробно-рациональная замена
- Дробно-рациональная замена в общем виде
- Замена многочлена
- Замена многочлена в общем виде
- Подведем итоги
- Важные советы при введении новой переменной
Метод замены переменной
Метод замены переменной – это такой способ решения, при котором в уравнение (или неравенство) вводится новая переменная, в результате чего оно становится более простым.
Этот метод один из самых популярных при решении сложных заданий, в частности, в ЕГЭ и ОГЭ.
У нас довольно сложное уравнение. А если раскрыть скобки, оно станет еще сложнее. Что делать? Давайте попробуем заменить переменную.
Заменим выражение \(x+\frac<1>
Получилось обычное квадратное уравнение! Решив его, найдем чему равно \(t\), после чего, сделав обратную замену, вычислим \(x\).
Когда не стоит вводить новую переменную? Когда это не сделает уравнение проще. Например, если старая переменная остается, несмотря на замену:
Попробуем сделать замену здесь.
Заменим выражение \(\sin x\) буквой \(t\).
Видим, что в этой замене нет никакого смысла – она не упростила уравнение, даже наоборот, усложнила его, потому что теперь у нас в уравнении две переменные.
Примеры использования метода замены переменной
Заметим, что \(x^4=(x^2 )^2\) (см. свойства степеней ). Тогда наше уравнение приобретает следующий вид.
Теперь используем метод замены.
Вводим новую переменную, заменяя \(x^2\) на \(t\).
Мы нашли чему равно \(t\), но найти-то надо иксы! Поэтому делаем обратную замену.
Ответ: \(±1\); \(±\) \(\frac<1><2>\) .
Весьма частая ошибка при использовании этого метода: забыть «вернуться к иксам», то есть не сделать обратную замену. Помните – нам нужно найти \(x\), а не \(t\)! Поэтому возврат к \(x\) — строго обязателен!
Пример. Решить неравенство: \(\log^2_3x-\log_3x-2>0\)
Приступим к решению.
Теперь нужно вернуться к исходной переменной – иксу. Для этого перейдем к совокупности , имеющей такое же решение, и сделаем обратную замену.
Источник
Обмен значений переменных: разбор популярных способов решения известной задачи с IT-собеседований
Авторизуйтесь
Обмен значений переменных: разбор популярных способов решения известной задачи с IT-собеседований
Самый простой способ взаимно менять значения переменных — использование swap(a, b) или же аналогичного стандартного метода. Тем не менее, важно понимать как работает операция по обмену значений двух переменных, что мы покажем на нескольких примерах.
Для начала продемонстрируем неправильную реализацию и выясним, что в ней не так.
Ошибочная реализация
Если вы попытаетесь выполнить обмен значений этим способом, то увидите, что теперь в обеих переменных хранится значение переменной b . Происходит это ввиду построчного выполнения кода. Первая операция присваивания сохраняет значение переменной b в переменную a . Затем вторая — новое значение a в b , иными словами значение b в b . Таким образом, мы полностью теряем содержание контейнера a .
Теперь обратимся к правильной реализации.
С использованием буфера
Буфером в данном случае называется дополнительная используемая память. Давайте разберёмся зачем она здесь нужна. Если помните, в неправильной реализации мы потеряли значение переменной a после первой операции присваивания, в связи с чем в обеих доступных переменных осталось значение b . Чтобы этого избежать нам понадобится ещё одна переменная — c . В таком случае правильный алгоритм будет выглядеть так:
Для наглядности разберём его пошагово:
- Присваиваем переменной c значение переменной a . Сейчас в a записана a , в b — b , а в c — a .
- Присваиваем переменной a значение переменной b . Теперь в a хранится b , в b — также b и в c — a .
- Присваиваем переменной b значение переменной c . Сейчас в a находится старое значение b , в b — a , ну и в c остаётся a .
Как вы видите, переменная c после выполнения алгоритма не нужна, поэтому далee в программе её можно не использовать и даже вовсе удалить из памяти.
Сразу стоит заметить, что это самое краткое и экономное решение задачи, но можно использовать и больше переменных, не так ли?
Нам повезло, что сейчас вопрос экономии оперативной памяти не стоит так остро, как 20-30 лет назад. Тем не менее, в те времена swap был востребован не меньше, поэтому умные люди нашли способ заменить значения двух переменных без ввода третьей.
Арифметика
Сложение / вычитание
Для лучшего восприятия снова разберём алгоритм построчно:
- Присваиваем переменной a сумму значений переменных a и b . Сeйчас в a записано значение a + b , а в b всё ещё b .
- Переменной b присваиваем разность между новым значением переменной a и переменной b . В a также хранится a + b , но в b уже a .
- Наконец, присваиваем переменной a результат вычитания b из обновлённого значения a . Получается, что в a теперь содержится b , а в b — a .
Для C-подобных языков сокращённая запись этого алгоритма выглядит так:
Умножение / деление
Аналогичный способ решения задачи получается при замене сложения умножением и вычитания делением:
В сокращённом варианте:
Вычитание / Сложение
Вообще, в математике действие вычитания отсутствует и является сложением положительного и отрицательного чисел. Отсюда следует, что мы можем поменять местами операции сложения и вычитания:
Обратите внимание, что в последней строке знак у переменной a изменился, а саму строчку можно записать иначе: a = b — a; .
Такой же принцип можно использовать поменяв местами деление и умножение.
Недостатки арифметического метода
Главным недостатком является большее количество операций, в чём можно убедиться посчитав операции сложения, вычитания и присваивания. Тeм болee, что умножeниe и дeлeниe болee «дорогостящиe». Заметной потеря скорости становится в ситуации, когда трeбуeтся менять значения большого количества пeрeмeнных.
Второй важный нeдостаток это область применения — числа. Согласитесь, менять значения пeрeмeнных, содержащих объeкты попросту нe получится без перегрузки операции. Впрочeм, дажe с числами могут возникнуть проблемы — арифметика для вeщeствeнных чисeл можeт выполняться некорректно, что приведёт к неожиданному результату.
Eстeствeнно, существует и менее очевидный способ рeшeния задачи без использования дополнительной памяти. Он основан на свойствах логических операций и работает с битовым представлением числа, а значит быстрее арифметического метода.
Битовые операции
Данный алгоритм основан на следующем свойстве операции XOR («исключающее или»): a XOR b XOR a = b .
Для любитeлeй коротких записeй приведём код одной строчкой. XOR в C-подобных языках замeняeтся знаком ^ :
Однако помните о точках следования. Из-за них этот код может вести себя непредсказуемо и давать разные результаты, поэтому никогда не используйте его в production коде.
Обязательно посмотрите более подробный разбор решения через битовые операции от Г. Лакмана Макдауэлла, автора известного сборника задач с собеседований, который есть в одной из наших книжных подборок.
Источник
Замена переменных в уравнениях (ЕГЭ 2022)
Метод замены переменных… Что это за зверь?
Это хитрый способ сначала сделать сложное уравнение простым (с помощью замены переменных) и потом быстро с ним разделаться.
Есть три способа замены переменной.
Читай эту статью — ты все поймешь!
Замена переменных — коротко о главном
Определение:
Замена переменных – метод решения сложных уравнений и неравенств, который позволяет упростить исходное выражение и привести его к стандартному виду.
Замена переменных – это введение нового неизвестного, относительно которого уравнение или неравенство имеет более простой вид.
Виды замены переменной:
Степенная замена: за \( \displaystyle t\) принимается какое-то неизвестное, возведенное в степень: \( \displaystyle t=<
Дробно-рациональная замена: за \( \displaystyle t\) принимается какое-либо отношение, содержащее неизвестную переменную: \( \displaystyle t=\frac<<
_ _ \) – многочлены степеней n и m, соответственно. Замена многочлена: за \( \displaystyle t\) принимается целое выражение, содержащее неизвестное: \( \displaystyle t=< _ _ _ \) – многочлен степени \( \displaystyle n\). Обратная замена: После решения упрощенного уравнения/неравенства, необходимо произвести обратную замену. Решение примера №1 Допустим, у нас есть выражение: \( \displaystyle < Подумай, к какому виду мы можем его привести, чтобы при расчетах легко найти корни? Правильно, данное уравнение необходимо привести к квадратному виду. Введем новую переменную \( \displaystyle t=< Метод замены переменной подразумевает, чтобы старой переменной \( \displaystyle x\) не оставалось – в выражении должна остаться только одна переменная – \( \displaystyle t\). Наше выражение приобретет вид: \( \displaystyle < \( \displaystyle \text Нашли ли мы корни исходного уравнения? Правильно, нет. На этом шаге не следует забывать, что нам необходимо найти значения переменной \( \displaystyle x\), а мы нашли только \( \displaystyle t\). Следовательно, нам необходимо вернуться к исходному выражению, то есть сделать обратную замену — вместо \( \displaystyle t\) ставим \( \displaystyle < Решаем два новых простых уравнения, не забывая область допустимых значений! При \( \displaystyle < \( \displaystyle < А что у нас будет при \( \displaystyle < Правильно. Решений данного уравнения нет, так как квадрат любого числа – число положительное, а в нашем случае – отрицательное, соответственно, при \( \displaystyle < В ответ следует записать необходимые нам корни, то есть \( \displaystyle x\), которые существуют: Ответ: \( \displaystyle 3\);\( \displaystyle -3\) Точно таким же образом необходимо действовать при решении неравенств. Выполняя замену переменных, необходимо помнить два простых правила: Решение примера №2 Попробуй самостоятельно применить метод замены переменной в уравнении \( \displaystyle 3< Подумай, к какому виду мы можем его привести, чтобы при расчетах легко найти корни? Проверь свое решение: Введем новую переменную \( \displaystyle t=< Наше выражение приобретет вид: \( \displaystyle 3< Возвращаемся к исходному выражению, то есть делаем обратную замену: вместо \( \displaystyle t\) ставим \( \displaystyle < Оба значения \( \displaystyle < При \( \displaystyle < Ответ: \( \displaystyle \sqrt[3]<2>;\sqrt[3]<\frac<1><3>>\) Например, с помощью замены \( \displaystyle t=< В неравенствах все аналогично. Например, в неравенстве \( \displaystyle a< Дробно-рациональная замена – \( \displaystyle y=\frac<< _ \) многочлены степеней n и m соответственно. При этом необходимо помнить, что область допустимых значений (ОДЗ) данного уравнения \( \displaystyle < Решение примера №3 Допустим, у нас есть уравнение: Так как на ноль делить нельзя, то в данном случае ОДЗ будет: \( \displaystyle x\ne 0\) Введем новую переменную \( \displaystyle t\). Пусть \( \displaystyle t=x+\frac<3> Сравни, что дает возведение \( \displaystyle t\) в квадрат, с первой сгруппированной скобкой в нашем примере. Что ты видишь? Правильно. Разница между тем, что у нас в примере, и тем, что дает нам возведение в квадрат, заключается в удвоенном произведении слагаемых. Соответственно, его и следует вычесть, переписывая наш пример с переменной \( \displaystyle t\). \( \displaystyle 2 В итоге мы получаем следующее выражение: \( \displaystyle < Решаем получившееся уравнение: Как мы помним \( t\), не является конечным решением уравнения. Возвращаемся к изначальной переменной: Приводя к общему знаменателю \( \displaystyle x\), мы приходим к совокупности 2-x квадратных уравнений: Решим первое квадратное уравнение: На этой стадии не забываем про ОДЗ. Мы должны посмотреть, удовлетворяют ли найденные корни области допустимых значений? Если какой-то корень не удовлетворяет ОДЗ – он не включается в конечное решение уравнения. Решим второе квадратное уравнение: Снова смотрим, удовлетворяют ли полученные корни ОДЗ? Далее записываем конечный ответ. Ответ: \( \displaystyle \frac<5+\sqrt<13>><2>;\text< >\!\! У тебя получился такой же? Попробуй решить все с начала до конца самостоятельно. Решение пример №4 Какой ответ у тебя получился? У меня \( \displaystyle 1\) и \( \displaystyle 3\). Сравним ход решения: Пусть \( \displaystyle t=\frac<1><<<\left( Приведем слагаемые к общему знаменателю: Не забываем про ОДЗ — \( \displaystyle t\ne 0\). Решаем квадратное уравнение: Как ты помнишь, \( \displaystyle t\) не является конечным решением уравнения. Возвращаемся к изначальной переменной: Решим первое уравнение: Решением первого уравнения являются корни \( \displaystyle 1\) и \( \displaystyle 3\). Решим второе уравнение: Решения не существует. Подумай, почему? Правильно! \( \displaystyle \frac<1><<<\left( Ответ: \( \displaystyle 1\); \( \displaystyle 3\) \( \displaystyle < _ Например, при решении возвратных уравнений, то есть уравнений вида обычно используется замена \( \displaystyle t=x+\frac<1> Сейчас покажу, как это работает. Легко проверить, что \( \displaystyle x=0\) не является корнем этого уравнения: ведь если подставить \( \displaystyle x=0\) в уравнение, получим \( \displaystyle a=0\), что противоречит условию. Разделим уравнение на \( \displaystyle < Теперь делаем замену: \( \displaystyle t=x+\frac<1> Прелесть ее в том, что при возведении в квадрат в удвоенном произведении слагаемых сокращается x: Вернемся к нашему уравнению: \( \displaystyle \begin Теперь достаточно решить квадратное уравнение и сделать обратную замену. Замена многочлена \( \displaystyle y=< _ _ Здесь \( \displaystyle < _ \) — многочлена степени \( \displaystyle n\), например, выражение \( \displaystyle 12< Решение примера №4 Применим метод замены переменной. Как ты думаешь, что нужно принять за \( \displaystyle t\)? Уравнение приобретает вид: Производим обратную замену переменных: Решим первое уравнение: Решим второе уравнение: \( \displaystyle << Решил? Теперь проверим с тобой основные моменты. За \( \displaystyle t\) нужно взять \( \displaystyle 2<< Мы получаем выражение: \( \displaystyle \text Решая квадратное уравнение, мы получаем, что \( t\) имеет два корня: \( \displaystyle -2\) и \( \displaystyle 1\). Далее делаем обратную замену и решаем оба квадратных уравнения. Решением первого квадратного уравнения являются числа \( \displaystyle 1\) и \( \displaystyle 3,5\) Решением второго квадратного уравнения — числа \( \displaystyle 0,5\) и \( \displaystyle 4\). Ответ: \( \displaystyle 0,5\); \( \displaystyle 1\); \( \displaystyle 3,5\); \( \displaystyle 4\) \( \displaystyle t=< _ _ Здесь \( \displaystyle < _ (например, выражение \( \displaystyle 4< _<4>>\left( x \right)\)). Чаще всего используется замена квадратного трехчлена: \( \displaystyle t=a< Метод замены переменной имеет \( \displaystyle 3\) основных типа замен переменных в уравнениях и неравенствах: Степенная замена, когда за \( \displaystyle t\) мы принимаем какое-то неизвестное, возведенное в степень. Замена многочлена, когда за \( \displaystyle t\) мы принимаем целое выражение, содержащее неизвестное. Дробно-рациональная замена, когда за \( \displaystyle t\) мы принимаем какое-либо отношение, содержащее неизвестную переменную. Разбор 3 примеров на замену переменных Пример 7. \( \displaystyle \left( << Решение примера №6 Пусть \( \displaystyle \text Так как \( \displaystyle \text Ответ: \( \displaystyle -2;\text< >1\) Решение примера №7 Пусть \( \displaystyle \text \( \displaystyle <<\text Решение: Это дробно-рациональное уравнение (повтори «Рациональные уравнения»), но решать его обычным методом (приведение к общему знаменателю) неудобно, так как мы получим уравнение \( \displaystyle 6\) степени, поэтому применяется замена переменных. Все станет намного проще после замены: \( \displaystyle t=< Теперь делаем обратную замену: Ответ: \( \displaystyle \sqrt[3]<3>\); \( \displaystyle \sqrt[3]<4>\). Решение примера 10 (замена многочлена) Решите уравнение \( \displaystyle \left( < Решение: И опять используется замена переменных \( \displaystyle t=< \( \displaystyle t\cdot \left( t+1 \right)=12\text< >\Rightarrow \text< >< Корни этого квадратного уравнения: \( \displaystyle t=-4\) и \( \displaystyle t=3\). Имеем два случая. Сделаем обратную замену для каждого из них: \( \displaystyle t=-4\text< >\Rightarrow \text< >< \( \displaystyle D=<<5>^<2>>-4\cdot 13=-17 \( \displaystyle x\in \left[ -\frac<7><2>;-\frac<1> <2>\right]\cup \left( 0;+\infty \right)\) \( \displaystyle y 0\) при всех \( \displaystyle x\), так как \( \displaystyle D=64-4\cdot 4\cdot 7=-48 0\) при всех \( \displaystyle x\), так как \( \displaystyle D=81-4\cdot 4\cdot 7=-31 0\) Источник_
_
Степенная замена \( \displaystyle y=<
Степенная замена в общем виде
Дробно-рациональная замена
_
_
Дробно-рациональная замена в общем виде
_
Замена многочлена
Замена многочлена в общем виде
Подведем итоги
Важные советы при введении новой переменной