Способ задания множеств при котором указываются общие свойства всех элементов

1.1.2. Способы задания множеств

Множество считается заданным, если о каждом элементе можно однозначно сказать, принадлежит он этому множеству или нет.

А) Простейший способ задания множества состоит просто в перечислении всех элементов данного множества.

Если множество A конечное, состоящее из элементов A1, A2, …, AN, то пишут A = <A1, A2, …, AN> . В частности, <A> — множество, состоящее из одного элемента A.

Но такой способ задания применим, разумеется, лишь к конечным множествам.

Б) Другой, универсальный способ: задание множества A С помощью характеристического свойства элементов данного множества, то есть такого свойства, которым обладают все элементы множества A и не обладают другие элементы, не принадлежащие A.

Если P(X) — такое свойство, то пишут: .

Например, для конечного множества A = <A1, A2,…, AN> можно записать: A = <X | x = A1, или X = a2, или …, или X = AN>. Множество всех депутатов парламента можно задать тьак: D = <X | X — депутат>. Множество всех студентов S = <x | X — студент>.

В) Еще один способ — это задание множества с помощью порождающей процедуры, или алгоритмический способ.

Например, пусть M = <1, 2, 4, 8, 16,…>— множество степеней числа 2. Тогда его можно задать так:

1) ; 2) если , то .

Другой пример: множество МP = <314, 159, 256, 358, …>задается как последовательность троек подряд идущих цифр десятилетней записи числа p = 3,141592653589793238462… . (В действительности, учитывая трансцендентность числа p, множество МP содержит все целые числа от 0 до 999.)

Г) Четвертый способ — задание множеств с помощью операций над уже известными множествами.

К описанию свойств, задающих множество, естественно предъявить требования точности и недвусмысленности. Например, множество хороших фильмов 1999г. разные люди зададут разными списками. Даже сами критерии отбора фильмов могут оказаться различными.

Надежный способ точного описания множества — распознающая (разрешающая) процедура. Например, для множества степеней двойки М2N разрешающей процедурой может служить разложение числа на простые множители.

Задание множества М4 нельзя отнести ни к одному из перечисленных способов; оно по сути совсем не задано, а только названо. Задать его можно списком футболистов, или описанием: М4 есть множество лиц, имеющих удостоверение футболиста клуба «Динамо-Минск». В этом случае разрешающая процедура — это проверка документов.

Источник

Понятие множества. Способы задания множеств

Описание презентации по отдельным слайдам:

Тема 1.1. Понятие множества и элемента множества. Способы задания множества

Читайте также:  Классификация электротехнических изделий по способу защиты от поражения током пример изделий

Множество — это совокупность объектов, рассматриваемая как одно целое. Понятие множества принимается за основное, т. е. не сводимое к другим понятиям. Объекты, составляющие данное множество, называются его элементами. Множества принято обозначать: A, B, C, …,Z. Элементы множества принято обозначать: a, b, c, …,z. — пустое множество «Объект a принадлежит множеству А» «Объект a НЕ принадлежит множеству А»

МНОЖЕСТВА Конечные Бесконечные N, Z, Q, R

Множество задано, если о любом объекте можно сказать, принадлежит он тому множеству или не принадлежит Способы задания множества Перечислением элементов Характеристическое свойство множества – это такое свойство, которым обладает каждый элемент, принадлежащий множеству, и не обладает ни один элемент, который ему не принадлежит Пример: Пример:

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 813 человек из 76 регионов

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 287 человек из 69 регионов

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 599 человек из 75 регионов

Ищем педагогов в команду «Инфоурок»

Номер материала: ДБ-076198

Международная дистанционная олимпиада Осень 2021

Не нашли то что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Безлимитный доступ к занятиям с онлайн-репетиторами

Выгоднее, чем оплачивать каждое занятие отдельно

В России выбрали топ-10 вузов по работе со СМИ и контентом

Время чтения: 3 минуты

Рособрнадзор откажется от ОС Windows при проведении ЕГЭ до конца 2024 года

Время чтения: 1 минута

Минпросвещения будет стремиться к унификации школьных учебников в России

Время чтения: 1 минута

Минпросвещения разрабатывает образовательный минимум для подготовки педагогов

Время чтения: 2 минуты

В проекте КоАП отказались от штрафов для школ

Время чтения: 2 минуты

Попова предложила изменить школьную программу по биологии

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Читайте также:  Способы ремонта магистральных трубопроводов

Источник

Способы задания множеств.

ПЛАН

1. Понятие множества.

2. Способы задания множеств.

3. Отношения между множествами.

4. Операции над множествами.

5. Свойства операций над множествами.

6. Понятие «система счисления».

7. Непозиционная система счисления.

8. Позиционная система счисления.

9. Перевод чисел из одной системы счисления в другую.

Понятие множества.

Для сокращенной записи будем использовать следующие символы:

a Î Aа является элементом множества А;

a Ï Aа не является элементом множества А;

— пустое множество;

• <a, d, с> — множество, состоящее из трех элементов a, d и с;

• <х|Р(х)> — множество, состоящее из таких элементов х, для которых истинно утверждение Р(х);

A È B — объединение множеств A и В;

A Ç B — пересечение множеств А и В;

A Ì BА является подмножеством В;

дополнение множества А до универсального множества;

U — универсальное множество;

a R b — между a и b существует бинарное отношение R.

Множество является самым широким понятием в математике и поэтому принимается без определения. Множество считается заданным, если относительно каждого объекта можно сказать, принадлежит он данному множеству или нет. Поэтому обычно говорят о множестве как о наборе предметов (элементов множества), наделённых определёнными общими свойствами. Множество книг в библиотеке, множество автомобилей на стоянке, множество звёзд на небосводе, растительный и животный мир Земли — всё это примеры множеств.

Конечное множество состоит из конечного числа элементов, например, множество страниц в книге, множество учеников в школе и т.д.

Пустое множество ( ) не содержит ни одного элемента, например, множество крылатых слонов, множество корней уравнения sin x = 2 и т.д.

Бесконечное множество состоит из бесконечного числа элементов, т.е. это множество, которое не является ни конечным, ни пустым. Примеры: множество действительных чисел, множество точек плоскости, множество атомов во Вселенной и т.д.

Счётное множество — множество, элементы которого можно пронумеровать. Например, множества натуральных, чётных, нечётных чисел. Счётное множество может быть конечным (множество книг в библиотеке) или бесконечным (множество целых чисел, его элементы можно пронумеровать следующим образом:

элементы множества: . -5, — 4, -3, -2, -1, 0, 1, 2, 3, 4, 5, .

номера элементов: . 11 9 7 5 3 1 2 4 6 8 10 . ).

Несчётное множество — множество, элементы которого невозможно пронумеровать. Например, множество действительных чисел. Несчётное множество может быть только бесконечным.

Читайте также:  Методы экономического анализа как способы исследования

Выпуклое множество — множество, которое наряду с любыми двумя точками А и В содержит также весь отрезок АВ. Примеры выпуклых множеств: прямая, плоскость, круг. Однако, окружность не является выпуклым множеством.

Способы задания множеств.

Если объект a является элементом множества A, то говорят, что a принадлежит A, и записывают a A . Запись a Ï A означает, что a не принадлежит A.

Множество может быть задано следующим образом:

• перечислением всех его элементов по их названиям (так описываются множество книг в библиотеке, множество учеников в классе, алфавит любого языка и т.д.);

Множество можно задать перечислением всех его элементов в любом порядке. Если множество A, например, состоит из первых четырех букв русского алфавита, то записывают

• заданием общей характеристики (общих свойств) элементов данного множества (например, множество рациональных чисел, собаки, семейство кошачьих и т.д.);

Множество может быть задано с помощью характеристического свойства, т.е. такого свойства, которым обладают все элементы данного множества и не обладают никакие другие объекты. Если множество A задано с помощью характеристического свойства P, то записывают A = <x|p(x)>

Например, запись A = <x|x R,—7

N — множество натуральных чисел;

Z — множество целых чисел;

Q — множество рациональных чисел;

R — множество действительных чисел.

Пример 1.1. Запишем различными способами множество A, элементами которого являются натуральные числа, не превосходящие числа 6.

Решение. Натуральными числами, не превосходящими числа 6, являются: 1, 2, 3, 4, 5, 6. Поэтому множество A можно записать так: A = <1, 2, 3, 4, 5, 6>, или A = <1, 3, 5, 2, 4, 6>, или A = <6, 5, 4, 3, 2, 1>, или перечислением элементов в каком-либо другом порядке.

По условию множество A задано описанием характеристического свойства его элементов «Быть натуральным числом, не превосходящим числа 6». Используя это свойство, множество можно записать так: A = <x|x N,x б>.

Пример 1.2. Прочитаем различными способами следующие записи:

а) 37 N ;

Решение. а) Число 37 является натуральным. Число 37 принадлежит множеству N. Число 37 — элемент множества N. Число 37 содержится во множестве N. Множество N содержит число 37.

б) Число 2,5 не является натуральным. Число 2,5 не принадлежит множеству N. Число 2,5 не является элементом множества N. Число 2,5 не содержится во множестве N. Множество N не содержит числа 2,5.

Пример 1.3. Используя понятие характеристического свойства, зададим следующие множества:

Решение. Множества A, B и C заданы способом перечисления элементов. Используя характеристические свойства, указанные множества можно задать следующим образом:

A — множество согласных букв русского алфавита;

B — множество цветов радуги;

C — множество дней недели.

Пример 1.4. Изобразим на числовой прямой элементы следующих множеств:

б) A = <x|x Z,—4 x

Источник

Оцените статью
Разные способы