Способ выплавки рельсовой стали
Владельцы патента RU 2291204:
Изобретение относится к металлургии, в частности к способам выплавки рельсовой стали в дуговых электросталеплавильных печах. Способ включает выплавку стали сериями с подачей в дуговую электросталеплавильную печь металлошихты, содержащей металлолом и жидкий чугун, расплавление, окислительный период, раскисление в печи стали алюминием на всех плавках серии, а раскисление шлака в печи на последней плавке в серии — порошком кокса, дробленого ферросилиция и гранулированного алюминия, выпуск стали в ковш без шлака, присадку в ковш при выпуске шлакообразующей смеси и необходимых раскислителей и легирующих. В ковш в качестве шлакообразующей смеси присаживают смесь, состоящую из извести и ванадийсодержащего конвертерного шлака, при соотношении (1,5-2,5):(0,3-0,8), соответственно, в количестве 1,8-3,3% от массы жидкой стали, и необходимые кремний- и марганецсодержащие ферросплавы. Изобретение позволяет увеличить сквозное извлечение ванадия до 80-90%. 1 табл.
Изобретение относится к черной металлургии, в частности к способам выплавки рельсовой стали в дуговых электросталеплавильных печах.
Известен выбранный в качестве прототипа способ выплавки рельсовой стали — прототип [1], включающий подачу в дуговую электросталеплавильную печь в качестве металлошихты металлолома и жидкого чугуна, расплавление, окислительный период, раскисление в печи стали алюминием и шлака порошком кокса, дробленого ферросилиция и гранулированного алюминия, выпуск плавки в ковш, присадку в ковш при выпуске твердой шлакообразующей смеси, состоящей из извести и плавикового шпата, отличающийся тем, что выплавку стали производят сериями, причем металлошихту первой плавки в серии дают массой на 10-15% больше массы металлошихты последующих плавок, а массу металлошихты последней плавки в серии уменьшают на 10-15%, окислительный период проводят до получения стали с содержанием углерода не менее 0,60% и температуры выше ликвидуса 180-240°С; причем сталь раскисляют на всех плавках серии алюминием в количестве 0,07-0,10% от массы металлошихты, а раскисление шлака в печи порошком кокса, дробленного ферросилиция и гранулированного алюминия в количестве, соответственно, каждого 0,09-0,10% от массы металлошихты проводят на последней плавке в серии, при выпуске первой и последующих плавок отсекают печной шлак, а последнюю плавку выпускают с печным шлаком, при выпуске плавок в ковш присаживают твердую шлакообразующую смесь, состоящую из извести и плавикового шпата, при соотношении (1,0-1,5): (0,3-0,5), соответственно, в количестве 3-3,3% от массы жидкой стали, и необходимые раскислители и легирующие.
Существенными недостатками данного способа выплавки рельсовой стали являются
— низкая сквозная степень усвоения ванадия при производстве стали;
— высокая себестоимость стали в связи с применением дорогостоящих ванадийсодержащих ферросплавов.
Известны способы производства ванадийсодержащих сталей с использованием ванадийсодержащего конвертерного шлака, причем ванадийсодержащий шлак присаживается в печь 3.
Существенными недостатками данных способов являются
— большая длительность плавки из-за проведения восстановления ванадия из ванадийсодержащего шлака в печи;
— высокий расход электроэнергии, электродов и огнеупоров;
— низкая степень извлечения ванадия из шлака;
— пониженный уровень физико-механических свойств в связи со значительной концентрацией в стали кислорода и загрязненностью стали неметаллическими включениями эндогенного типа.
Желаемыми техническими результатами изобретения являются
— повышение сквозного извлечения ванадия и снижение себестоимости стали.
Для этого предлагается способ выплавки рельсовой стали, включающий выплавку стали сериями с подачей в дуговую электросталеплавильную печь металлошихты, содержащей металлолом и жидкий чугун, расплавление, окислительный период, раскисление (в печи стали алюминием на всех плавках серии, а раскисление шлака в печи на последней плавке в серии — порошком кокса, дробленого ферросилиция и гранулированного алюминия), выпуск стали в ковш без шлака, присадку в ковш при выпуске шлакообразующей смеси и необходимых раскислителей и легирующих, отличающийся тем, что в ковш в качестве шлакообразующей смеси присаживают смесь, состоящую из извести и ванадийсодержащего конвертерного шлака, при соотношении (1,5-2,5):(0,3-0,8), соответственно, в количестве 1,8-3,3% от массы жидкой стали, и необходимые кремний и марганецсодержащие ферросплавы.
Соотношение и количество смеси выбрано, исходя из степени восстановления ванадия, а также исходя из рафинирующей и теплоизолирующей способности ковшевого шлака. При количестве шлака менее 1,8% от массы основность шлака не обеспечивает полного восстановления ванадия и велики теплопотери через шлак, при количестве шлака более 3,3% от массы необходимо значительное количество тепла для расплавления шлакообразующей смеси, а повышение кратности шлака приводит к снижению степени восстановления ванадия из шлака.
Заявляемый способ выплавки рельсовой стали был реализован при выплавке стали в дуговых электросталеплавильных печах ДСП-100И7. Выплавка проводилась по следующей схеме. Завалка первой плавки в серии по металлозавалке была на 10-15 т больше последующих завалок, а последней в серии плавки на 10-15 т меньше. Завалка состояла из 80-90 т металлолома и 3-8 т извести. Заливка чугуна в количестве 30-35 т проводилась из чугуновозного ковша посредством мостового крана при открытом своде после проплавления «колодцев» и частичного осаживания металлолома в печи. Окисление углерода проводили в печи до концентрации не менее 0,60% посредством продувки стали через сводовую водоохлаждаемую фурму, при этом температура в печи изменялась в пределах 1650-1710°С. Далее проводили раскисление стали чушковым алюминием в количестве 70-100 кг, а на последней в серии плавке проводили дополнительно раскисление шлака порошком кокса, дробленого ферросилиция и гранулированного алюминия по 100 кг каждого. При выпуске в ковш присаживали твердую шлакообразующую смесь, состоящую из извести (1500 и 2500 кг) и ванадийсодержащего конвертерного шлака (300-800 кг), и необходимые раскислители и легирующие. На опытных плавках использовался ванадийсодержащий конверторный шлак следующего химического состава: 16,0-18,8% V2О5; 10-13,5% SiO2; 2,0-2,3% CaO; P≤0,05%; 9,8-11,0% MnO. Параметры опытных плавок приведены в таблице.
Заявляемый способ обеспечивает снижение себестоимости стали на 4-8 долларов на тонну и увеличивает сквозное извлечение ванадия с 60-70 при использовании ферросплавов до 80-90%. при применении заявляемого способа.
1. Пат. РФ 2235790, С 21 С 5/52, 7/076.
2. А.С. 2133782, С 21 С 5/52.
3. А.С. 605839, С 21 С 5/52.
4. А.С. 836125, С 21 С 5/52.
5. А.С. 1046294, С 21 С 5/52.
Таблица Параметры опытных плавок | |||||
№ плавки | № в серии | Марка стали | Смесь (известь и ванадийсодержащий шлак) | Масса смеси, % | Усвоение ванадия, % |
1 | 1 | НЭ76Ф | 1,4:0,25 | 1,8 | 70 |
2 | 2 | НЭ76Ф | 1,6:0,4 | 2,0 | 87 |
3 | 3 | НЭ76Ф | 1,5:0,3 | 1,8 | 86 |
4 | 4 | НЭ76Ф | 1,6:0,5 | 2,1 | 88 |
5 | 1 | НЭ76Ф | 2,5:0,4 | 2,9 | 90 |
6 | 2 | НЭ76Ф | 2,6:0,8 | 3,2 | 92 |
7 | 3 | НЭ76Ф | 2,0:0,5 | 2,5 | 89 |
8 | 4 | НЭ76Ф | 2,0:0,5 | 2,5 | 88 |
9 | 5 | НЭ76Ф | 2,0:0,8 | 2,8 | 95 |
10 | 6 | НЭ76Ф | 2,0:0,7 | 3,2 | 95 |
11 | 7 | НЭ76Ф | 2,4:0,6 | 3,0 | 93 |
12 | 1 | НЭ76Ф | 2,3:0,8 | 3,3 | 92 |
13 | 2 | НЭ76Ф | 1,9:0,4 | 2,3 | 86 |
14 | 3 | НЭ76Ф | 2.6:0,3 | 2,9 | 70 |
15 | 4 | НЭ76Ф | 2,5:0,6 | 3,4 | 88 |
прототип | НЭ76Ф | 60-70 |
Способ выплавки рельсовой стали, включающий выплавку стали сериями с подачей в дуговую электросталеплавильную печь металлошихты, содержащей металлолом и жидкий чугун, расплавление, окислительный период, раскисление в печи стали алюминием на всех плавках серии, а раскисление шлака в печи на последней плавке в серии — порошком кокса, дробленого ферросилиция и гранулированного алюминия, выпуск стали в ковш без шлака, присадку в ковш при выпуске шлакообразующей смеси и необходимых раскислителей и легирующих, отличающийся тем, что в ковш в качестве шлакообразующей смеси присаживают смесь, состоящую из извести и ванадийсодержащего конвертерного шлака, при соотношении (1,5-2,5):(0,3-0,8), соответственно, в количестве 1,8-3,3% от массы жидкой стали и необходимые кремний- и марганецсодержащие ферросплавы.
Источник
Рельсовая сталь
Современный железнодорожный транспорт не похож на тот, что был 100 лет назад. Скорость поездов с того времени увеличилась почти в 5 раз, а грузоподъемность в 8-10. Такие количественные изменения не могли не затронуть и рельсы, по которым перемещается локомотив. Их износостойкость, прочность и твердость также достигли нового уровня своих значений. В нынешнее время рельсовая сталь обладает целом рядом функциональных особенностей.
Химический состав
Рельсовая сталь — это группа сталей, которых объединяет общий способ применения. А именно, изготовление рельсовых путей сообщения для железнодорожного транспорта. В основе фазовой структуры сплава лежит мелко игольчатый перлит. Для выплавки металла используют либо конверторные, либо обычные дуговые сталеплавильные печи.
Рельсовые марки стали подразделяются на 2 группы в зависимости от вида применяемых раскислителей:
- В 1-ую группу входит сталь, раскисленная ферромарганцем или ферросилицием.
- Вторая — включает в себя раскислители на основе алюминия. Металл 2-ой группы является предпочтительней, т.к. содержит в себе меньший процент неметаллических включений.
Химический состав рельсы полностью регулируется государственным стандартом ГОСТ Р 554 97- 2013. Согласно ему, помимо основного компонента железа, сплав должен включать в себя следующий набор элементов:
- Углерод (0,71-0,82%) является базовой составляющей любой стали. Главное назначение углерода — это увеличение механических характеристик стального сплава. Происходит это за счет связывания молекул железа частицами углерода, в результате чего образуются более крупные, твердые и одновременно прочные молекулы карбидов железа. К тому же углерод позволяет стали дополнительно упрочняться при воздействии на нее повышенной температуры. Таким образом, твердость и предел прочности рельс может быть увеличен еще на 100%.
- Марганец (0,25-1,05%) способствует улучшению механических свойств рельсы. Благодаря его добавлению в состав удается увеличить значение ударной вязкости в среднем на 20-30%. Твердость и износостойкость также повышаются. Но в отличие от углерода, изменение данных показателей происходит без ухудшения его пластичных свойств, что играет не мало важную роль для технологичности рельсовой стали
- Кремний (0,18-0,40%) удаляет остатки кислорода, улучшая тем самым внутреннюю кристаллическую структуру. Снижает вероятность риска образования ликвации — химической неоднородности сплава по своему химическому составу. Все это дает возможность увеличить долговечность железнодорожного пути в 1,3-1,5 раза.
- Ванадий (0,08-0,012%) ответственен за контактную прочность рельсы. При добавлении его в сплав он сразу же связывается углеродом, образовывая карбиды ванадия. Данное соединение имеет повышенную износостойкость и плотность, тем самым увеличивая нижний порог предела выносливости сплава.
- Азот (0,03-0,07%) относится к группе вредных примесей. Его отрицательное воздействие заключается в нейтрализации легирования стали ванадием. Т.е. вместо карбидов образуются нитриды ванадия. Они обладают низкими значениями механических свойств. Не способны термоупрочняться. В общем, сводят дорогостоящее легирование ванадием на нет.
- Фосфор (до 0,035%) входит в группу нежелательных элементов в составе. Его главный отрицательный эффект — это повышение их хрупкости. Железнодорожное полотно обладает достаточной твердостью, но при этом не имеет должного значения прочности. Все это приводит к высокой вероятности образования трещин и последующему разлому рельсы.
- Сера (до 0,045%) снижает технологические параметры стали. Податливость сплава во время его горячей обработки давлением резко падает. Возникает повышенный риск образования трещин. Рельсы, полученные из такой стали, отправляются в брак по причине обладания повышенной хрупкостью.
В зависимости от содержания серы и фосфора рельсовые стали подразделяются 2 сорта. Первый сорт имеет в своем составе меньший процент данных вредных примесей. Он более предпочтителен и применяется на более ответственных участках железнодорожного пути.
Механические свойства
Рельсовые марки стали отличаются повышенной стойкостью к циклическим нагрузкам. Их предел прочности в зависимости от марки колеблется в пределах от 800 до 1000 МПа. Деформироваться рельсовая сталь начинает в промежутке от 600 до 810 МПа. Опять же, это зависит от того соотношения легирующих элементов в составе стального сплава.
Сталь хорошо справляется с ударной нагрузкой. Значение ударной вязкости составляет 2,5 кг/см2. Твердость сплава находится в прямой зависимости от качества проведения термической обработки. Объемная закалка способно увеличить данный параметр до 60 единиц по шкале Роквелла.
Рельсовая марка обладает умеренной пластичностью. Относительное сужение для нее равняется 25%, что позволяет прокатывать рельсы горячим способом. Предварительно нагрев их до температуры 900-1000 ºC.
Применение и марки рельсовой стали
Как уже было сказано ранее, основное назначение данного металла — это изготовление рельс железнодорожного пути. Ниже приведен список тех марок, которые наиболее активно применяются для этой цели:
- Сталь 76. Одна из наиболее востребованных марок в производстве рельс. Основное назначение — изготовление рельс типа РП50 и РП65, которые применяется преимущественно при прокладке железнодорожных путей промышленного транспорта с широкой колеёй.
- Сталь 76Ф. От вышеописанной стали ее отличает дополнительное содержание ванадия в своем составе. Рельсы данной марки обладают большим ресурсом работы — способны пропускать через себя большее количество локомотивов.
- Сталь К63. Данная марка используется при изготовлении крановых рельс. Она дополнительно легирована 0,3% никеля. Металл помимо оптимальной прочности, обладает несколько лучшим значением коррозионностойкости.
- Сталь К63Ф. Рельсы, изготовленные из данной марки, отличаются большей циклической прочностью за счет добавления в их состав вольфрама.
- Сталь М54. Имеет повышенное содержание марганца. Применяется для производства стыковочных рельс-накладок.
- Сталь М68. Используются при прокладке путей верхнего строения.
Рельсовая марка стали сегодня является одним из ключевых материалов, применяемых при изготовлении железнодорожного полотна. Это стало благодаря оптимальным значениям механических характеристик и, что не менее важно, низкой стоимостью такого рода рельс. Но до сих пор, процесс по поиску оптимального химического состава стали данной группы продолжается. Кто знает какие решения будут приняты через год, и как они повлияют на долговечность железнодорожных путей.
Источник