Построение линии пересечения конусов методом концентрических сфер
На рисунке ниже изображены два конуса вращения. Их оси i1 и i2, пересекаясь в точке O, образуют плоскость α(i1∩i2), которая параллельна фронтальной плоскости проекций π2.
Для построения линии пересечения конусов, показанных на рисунке, целесообразно использовать метод концентрических сфер. Применение данного метода возможно в результате выполнения следующих условий:
- пересекаются поверхности вращения (в частности, конус с конусом, конус с тором или цилиндром и т.д.);
- оси поверхностей, пересекаясь между собой, образуют плоскость, которая параллельна одной из плоскостей проекций (в рассматриваемом примере пл. α(i1∩i2)∥π2).
Алгоритм построения линии пересечения
Построение линии пересечения начинают с нахождения характерных точек, которые определяют ее границы и видимость относительно плоскостей проекций.
Определение характерных точек
Плоскость α, образованная пересекающимися осями i1 и i2, является общей плоскостью симметрии двух конусов. На рисунке показан ее горизонтальный след h0α. Пересечение пл. α с конусами происходит по образующим S2A, S2B и S1C, S1D. Данные образующие ещё называют очерковыми, так как они очерчивают границы поверхностей (на фронтальной проекции).
Точки F’’, E’’, G’’, K’’, в которых пресекаются прямые S’’2A’’, S’’2B’’ с прямыми S’’1C’’ и S’’1D’’, определяют границы линии пересечения конусов в её проекции на плоскость π2. Для нахождения F’, E’, G’ и K’ проводят линии связи из F’’, E’’, G’’, K’’ до горизонтального следа h0α.
Определение промежуточных точек
Воспользуемся методом концентрических сфер для нахождения множества промежуточных точек линии пересечения. Центром, из которого проводятся вспомогательные сферы, является точка O пересечения осей i1 и i2 рассматриваемых конусов.
Радиус Rmax наибольшей сферы, применяемой в построениях, равен длине отрезка O’’G’’ – расстоянию от точки O до наиболее удаленной от нее точки G пересечения очерковых образующих.
Сфера минимального радиуса Rmin – это сфера, вписанная в один из конусов и пересекающая другой. На рисунке ниже Rmin= O’’H’’, где O’’H’’⊥ S’’2B’’.
Рассмотрим построение точек 1, 2, 3 и 4. Сфера радиусом Rmin пересекается с конусом, в которой она вписана, по окружности. Данная окружность проецируется на фронтальную плоскость проекций в виде отрезка P’’H’’. Кроме того, сфера радиусом Rmin пересекается со вторым конусом по двум окружностям, диаметры которых соответственно равны длинам отрезков M’’N’’ и T’’L’’. Таким образом, на поверхности сферы лежат три окружности, которые пересекаются в общих для двух конусов точках 1, 2, 3 и 4.
Фронтальные проекции 1’’, 2’’, 3’’, 4’’ находятся на пересечении отрезков M’’N’’, T’’L’’ с P’’H’’. Для нахождения горизонтальных проекций 1’, 2’, 3’, 4’ точек 1, 2, 3, 4 на плоскости проекций π1 из центра O’ проводим две окружности с диаметрами M’’N’’ и T’’L’’. Учитывая принадлежность точек соответствующим окружностям, по линиям связи определяем их горизонтальные проекции, как это показано на рисунке выше.
С помощью вспомогательной сферы радиусом Rvar, где Rmin ≤ Rvar ≤ Rmax, найдены точки 5 и 6. Как видно из построений, они находятся на пересечении двух окружностей, которые проецируются на фронтальную плоскость в виде отрезков W’’U’’ и Q’’V’’.
В описываемом способе решения каждая сфера играет роль посредника, содержащего на своей поверхности кривые (окружности), принадлежащие пересекающимся конусам. Действуя в соответствии с приведенным выше алгоритмом, необходимо найти такое количество точек, которое позволит определить геометрическую форму линии пересечения на каждой из проекций.
Найденные точки соединяем плавными кривыми с учетом их видимости. Как видно на рисунке, в результате пересечения конусов образовались две замкнутые линии. Они показаны красным цветом.
Источник
Способ вспомогательных секущих концентрических сфер
При определении линии пересечения двух поверхностей вращения, при их особом взаимном расположении, не всегда рационально применять вспомогательные секущие плоскости. В некоторых случаях применяют метод вспомогательных секущих сфер – концентрических или эксцентрических.
Концентрические сферические посредники применяются при определении линии пересечения двух поверхностей вращения с пересекающимися осями.
Каждая из этих поверхностей имеет семейство окружностей, являющихся линиями сечения их концентрическими сферами. Применению метода концентрических сфер должно предшествовать такое преобразование чертежа, в результате которого оси обеих поверхностей должны быть расположены параллельно одной и той же плоскости проекций (рис.151) или одна из осей становиться проецирующей прямой, а вторая — линией уровня (рис.152).
| | | |
| |||
| |||
| |||
а) модель | б) эпюр | ||
Оси поверхностей G и Q параллельны фронтальной плоскости проекций и пересекаются в точки А (рис.151). Эта точка принимается за центр всех вспомогательных концентрических сфер. Каждая из концентрических сфер пересекает поверхности по окружностям — параллелям (а, b, c, d, n), фронтальные проекции которых являются прямыми линиями (а2, b2, c2, d2, n2). Проекции точек 12, 22, 32, 42, 52 и 62 пересечения проекций параллелей принадлежат проекции искомой линии пересечения поверхностей. Пересечение главных фронтальных меридианов поверхностей определяют положение верхней и нижней точек (7 и 8) линии.
Для точного построения линии пересечения поверхностей необходимо найти точки 9 и 10, которые определяют границу зоны видимости линии пересечения поверхностей на горизонтальной проекции. Для этой цели использовалась вспомогательная секущая плоскость b , которая пересекает поверхность Q по линии m, а поверхность G по образующим, горизонтальные проекции которых пересекаясь определяют положение искомых точек.
Соединив найденные точки 1. 10 с учетом видимости получим линию пересечения поверхностей.
Рисунок 152. Пересечение поверхностей вращения,
ось одной — горизонтально проецирующая
прямая, а второй — горизонталь
Вторым примером использования в качестве вспомогательных поверхностей посредников концентрических сфер рассмотрим при определении линии пересечения поверхностей предложенных на рисунке 152. Оси поверхностей вращения G и Q пересекаются в точки А , при этом ось поверхности Q — горизонтально проецирующая прямая, а ось поверхности G — горизонталь. Точка А принимается за центр всех вспомогательных концентрических сфер.
Точки 1 и 2 линии пересечения построены с помощью сферы радиуса R. Эта сфера пересекает поверхность Q по окружности а, а поверхность G по окружности b , которая показана только на горизонтальной проекции. Пересечение горизонтальных проекций окружностей а1 и b 1 определяют проекции 11 и 21 точек линии пересечения. Их фронтальные проекции 12 и 22 построены на а2 пересечении с линиями связи.
Для нахождения точек 5 и 6 определяющих границу зоны видимости на горизонтальной проекции, использовалась вспомогательная секущая плоскость b , которая пересекает поверхность Q по окружность n, а коническую поверхность G по треугольнику, определяющему ее очерк на горизонтальной проекции.
Точки 7 и 8 находятся на границе зоны видимости фронтальной проекции, для их нахождения используется вспомогательная секущая плоскость g .
Соединив найденные точки 1. 8 с учетом видимости получим линию пересечения поверхностей G и Q.
Эксцентрические сферические посредники применяются при определении точек линии пересечения поверхностей вращения с поверхностью несущей на себе непрерывное множество окружностей. Обе поверхности должны иметь общую плоскость симметрии. Вспомогательные эксцентрические сферы пересекаются с данными поверхностями по окружностям.
| | | |
| |||
| |||
| |||
а) модель | б) эпюр | ||
Определения линии пересечения конуса и сферы применение эксцентричных сфер, как поверхностей — посредников. Центры сфер — точки расположены на оси конуса. Сфера пересекает конус и сферу по окружностям , которые пересекаются в двух точках, принадлежащих искомой линии пересечения (рис.153а).
Верхняя и нижняя точки линии пересечения найдены с помощью вспомогательной секущей плоскости — плоскости главного фронтального меридиана, пересекающая конус и сферу по треугольнику и окружности, являющимися очерками поверхностей на фронтальной плоскости проекций.
Точки, определяющие границу зоны видимости линии пересечения на горизонтальной плоскости проекций, найдены с помощью вспомогательной секущей плоскости — горизонтальной плоскости уровня, пересекающей сферу по экватору — окружности являющейся очерком шара на горизонтальной проекции, а конус по окружности — параллели.
Точки, найденные с помощью вспомогательных поверхностей посредников, определяют линию пересечения конуса и шара.
Рассмотрим, на примере определения линии пересечения конуса Q и сферы G (рис.153б), применение эксцентричных сфер, как поверхностей — посредников. Центры сфер — точки А 1 , А 2 и А 3 расположены на оси конуса. Сфера радиуса R 1 с центром в точке А 1 пересекает конус и сферу по окружностям а и в, которые пересекаются в точках 1 и 2, принадлежащих искомой линии пересечения. С помощью сферы R 2 с центром А 2 и сферы R 3 с центром А 3 определено положение точек 3, 4 и 5,6 соответственно. Точки 7 и 8 найдены с помощью вспомогательной секущей плоскости a (плоскости фронтального меридиана), пересекающей конус и сферу по главным фронтальным меридианам k и l . Точки 9 и 10, определяющие границу зоны видимости линии пересечения на горизонтальной плоскости проекций, найдены с помощью вспомогательной секущей плоскости b (горизонтальной плоскости уровня), пересекающей сферу G по экватору s, а конус Q по окружности p. Точки 1. 10, построенные с помощью вспомогательных поверхностей посредников, определяют линию пересечения конуса и шара.
Источник
Способ секущих концентрических сфер
Применение сфер в качестве поверхностей-посредников основано на теореме о двух соосных поверхностях вращения.
Следствие этой теоремы:
Сфера, центр которой лежит на оси поверхности вращения, пересекается с последней по окружностям.
Линия пересечения сферы с поверхностью проецируется на одну из плоскостей проекций в виде отрезков, а на другую – в виде окружности.
Этот способ может быть использован лишь при одновременном выполнении трех условий:
1. Пересекающиеся поверхности – поверхности вращения.
2. Оси поверхностей пересекаются.
3. Поверхности имеют общую плоскость симметрии, параллельную одной из плоскостей проекций.
Пример: Построить линию пересечения конуса и цилиндра.
При решении этой задачи сначала строится фронтальная проекция линии пересечения, т.к. общая плоскость симметрии поверхностей параллельна фронтальной плоскости проекций.
«Крайние» точки сечения – высшая и низшая, ближайшая и наиболее удаленная точки (точки, лежащие на границе видимости относительно горизонтальной плоскости проекций) определяются с помощью плоскостей уровня.
Промежуточные точки сечения находятся с помощью секущих сфер, центр которых располагается в точке пересечения осей вращения поверхностей. Сфера минимального радиуса проводится так, чтобы она касалась одной поверхности, а вторую пересекала. Секущие сферы соосны с поверхностями конуса и цилиндра, а следовательно, пересекают их по параллелям.
Источник