Плоскопараллельное перемещение
Плоскопараллельное перемещение — способ перехода от общего положения геометрической фигуры к частному, которое можно осуществить за счет изменения взаимного положения проецируемой фигуры и плоскости проекции путем перемещения в пространстве проецируемой фигуры так, чтобы она заняла частное положение относительно плоскостей проекций, которые при этом не меняют своего положения в пространстве.
Данный путь лежит в основе метода плоскопараллельного перемещения
Плоскопараллельное перемещение осуществляется путем перемещения геометрической фигуры в новое положение так, чтобы траектория перемещения ее точек находились в параллельных плоскостях. Образно это можно представить в виде перемещения например отрезка вмерзшего в кусок льдины.
В зависимости от положения этих плоскостей по отношению к плоскостям проекций и вида кривой траектории перемещения точек различают:
а) способ параллельного перемещения. Плоскости — носители траекторий перемещения точек параллельны какой-либо плоскости проекции. Траектория — произвольная линия.
б) способ вращения вокруг оси, перпендикулярной к плоскости проекций. Плоскости — носители траектории перемещения точек параллельны плоскости проекции. Траектория — дуга окружности, центр которой находится на оси,перпендикулярной плоскости проекции;
в) способ вращения вокруг оси, параллельной плоскости проекции (вращение вокруг линии уровня);
Плоскости — носители траектории перемещения точек перпендикулярны данной линии уровня. Траектория — дуга окружности, центр которой находится на линии уровня.
г) способ вращения вокруг оси, принадлежащей плоскости проекции (вращение вокруг следа плоскости);
Плоскости — носители траектории перемещения точек перпендикулярны данному следу плоскости. Траектория — дуга окружности, центр которой находится на следе плоскости.
Источник
Метод плоскопараллельного перемещения
В начертательной геометрии метод плоскопараллельного перемещения используется, как правило, для определения натуральных величин плоских фигур, отрезков и углов.
Свойства плоскопараллельного перемещения:
- При перемещении любой фигуры параллельно плоскости проекции, проекция фигуры на эту плоскость остается неизменной.
- При перемещении точки параллельно горизонтальной плоскости проекции, её фронтальная проекция движется по прямой, параллельной оси X. На рисунке ниже точки C» и D», следуя этому свойству, заняли положение C»1 и D»1.
- При перемещении точки параллельно фронтальной плоскости проекции, её горизонтальная проекция движется по прямой, параллельной оси X.
Рассмотрим перевод произвольно расположенного отрезка CD в положение, параллельное горизонтальной плоскости проекций П2.
- Используя первое свойство параллельного перемещения, на любом свободном месте чертежа строим отрезок C’1D’1 = C’D’.
- По линиям связи определяем недостающие проекции C»1 и D»1. Стрелками показано перемещение точек C» и D» параллельно оси X в соответствии со вторым свойством рассматриваемого метода.
Следующий рисунок иллюстрирует перевод отрезка MN в проецирующее положение по отношению к фронтальной плоскости проекций П2. В общем случае для решения подобной задачи необходимо дважды воспользоваться методом плоскопараллельного перемещения.
- После первого преобразования отрезок MN займет положение параллельно плоскости П1. Сначала строится M»1N»1 = M»N» на произвольном месте чертежа, после чего по линиям связи находятся недостающие проекции M’1 и N’1.
- Второе преобразование заключается в параллельном переносе горизонтальной проекции отрезка M’1N’1 в положение M’2N’2, перпендикулярное оси X. После этого точки M»2 = N»2 определяются по линиям связи.
Определение натуральной величины треугольника
Рассмотрим порядок плоскопараллельного перемещения треугольника ABC с целью определения его натуральной величины.
- Через точку С треугольника ABC проводим горизонталь CD. Находим её недостающие проекции.
- Переводим ABC в положение, перпендикулярное фронтальной плоскости проекций. Для этого строим C’1D’1 = C’D’ перпендикулярно оси X. В соответствии с первым свойством плоскопараллельного перемещения достраиваем треугольник A’1B’1C’1 = A’B’C’. По линиям связи определяем точки A»1, B»1, C»1.
- Перемещаем проекцию A»1B»1C»1 треугольника ABC в положение A»2B»2C»2, параллельное оси X, соблюдая равенство A»2B»2C»2 = A»1B»1C»1. По линиям связи определяем точки A’2, B’2, C’2. Теперь треугольник ABC расположен параллельно горизонтальной плоскости проекций и проецируется на неё в натуральную величину A’2B’2C’2.
Определение расстояния между параллельными прямыми
Расстояние между двумя параллельными прямыми равно длине перпендикуляра, опущенного из произвольной точки первой прямой на вторую прямую. Рассмотрим, как указанное расстояние определяется на практике с помощью метода плоскопараллельного перемещения.
Путем двух последовательных преобразований прямые a и b переводятся в положение, перпендикулярное горизонтальной плоскости. Таким образом, они проецируются на неё в точки A’2 и B’2, расстояние между которыми является искомым. Показанные на рисунке величины d1 и d2 являются вспомогательными для выполнения построений согласно свойствам плоскопараллельного перемещения.
Источник
Плоскопараллельное перемещение
Плоскопараллельное перемещение
Частный случай способа вращения вокруг проецирующей оси — вращение предмета без указания на чертеже осей вращения, который называют способом плоскопараллельного перемещения. Способ удобен тем, что повернутые вокруг предполагаемой проецирующей оси проекции предмета перемещают и располагают на свободном поле чертежа без взаимного их наложения.
На рис. 6.16 показано построение натуральной величины плоскости общего положения, заданной треугольником , способом плоскопараллельного перемещения.
Для решения задачи плоскость должна занять положение плоскости уровня — или фронтальной
или горизонтальной
. Следовательно, плоскость нужно вращать и одновременно перемещать по полю чертежа, чтобы она последовательно заняла сначала проецирующее положение, а затем положение плоскости уровня.
Для двух последовательных преобразований нужно выполнить следующий графический алгоритм.
Первое перемещение. Плоскость общего положения вращением вокруг предполагаемой, например, горизонтально-проецирующей оси преобразовать во фронтально-проецирующую плоскость, выполнив следующие графические действия:
1-е действие. Провести в плоскости горизонталь .
2-е действие. Повернуть горизонтальную проекцию треугольника, вращая вокруг предполагаемой горизонтально-проецирующей оси (например, проходящей через точку
) и одновременно перемещая вправо на свободное поле чертежа так, чтобы горизонталь
плоскости заняла положение фронтально-проецирующей прямой, то есть
должна расположиться перпендикулярно оси
. Повернутую проекцию треугольника
относительно проекции горизонтали
построить с помощью дуговых засечек, на пересечении которых определяются вершины.
3-е действие. Построить фронтальную проекцию треугольника, переместив заданные фронтальные
проекции вершин треугольника параллельно оси проекций
до пересечения с вертикальными линиями связи от точек
и
повернутой проекции: фронтальная проекция выродилась в линию, то есть треугольник преобразовался во фронтально-проецирующую плоскость.
Второе перемещение. Плоскость фронтально-проецирующую вращением вокруг предполагаемой фронтально-проецирующей оси преобразовать в горизонтальную плоскость уровня, продолжая графические действия:
4-е действие. Повернуть построенную вырожденную проекцию треугольника, вращая вокруг предполагаемой фронтально-проецирующей оси, проходящей через точку
, и одновременно перемещая вправо на свободное поле чертежа так, чтобы эта проекция расположилась параллельно оси проекций
: проекция
оси
.
5-е действие. Построить новую горизонтальную проекцию треугольника, переместив горизонтальные проекции
и
вершин треугольника параллельно оси проекций
до пересечения вертикальными линиями связи от фронтальных проекций
и
вершин; построенная горизонтальная проекция
треугольника и есть его натуральная величина, так как после второго перемещения треугольник преобразовался в горизонтальную плоскость уровня.
Эта теория взята со страницы лекций для 1 курса по предмету «начертательная геометрия»:
Возможно эти страницы вам будут полезны:
Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института
Источник