Способ утилизации углекислого газа

Переработка углекислого газа

Дата публикации: 19.05.2018 2018-05-19

Статья просмотрена: 1444 раза

Библиографическое описание:

Тумина, Т. С. Переработка углекислого газа / Т. С. Тумина. — Текст : непосредственный // Молодой ученый. — 2018. — № 20 (206). — С. 117-119. — URL: https://moluch.ru/archive/206/50464/ (дата обращения: 18.11.2021).

Углекислый газ является основным источником парникового эффекта, вызывающий глобальное потепление и изменение климата. В связи с этим, во избежание более опасных последствий, Межправительственная группа экспертов по изменению климата (МГЭИК) и Конференция Организации Объединенных Наций по изменению климата подчеркнули необходимость сокращения выбросов CO2 по меньшей мере на половину от текущего значения к 2050 году, стремясь ограничить глобальное увеличение средней температуры до максимума 2 ° C. Углекислый газ выбрасывается главным образом от электростанций (например, на основе угля) и транспортных средств, а также другие промышленные источники способствуют увеличению выбросов CO2 в атмосферу, такие как котлы или цементные и сталелитейные заводы. Растущее население мира, повышение благосостояния, изменение пищевых привычек увеличение числа животноводческих ферм, также повышает выбросы CO2. В целях сокращения выбросов CO2 в ряде стран был предложен налог на выбросы углерода в качестве стратегии, позволяющей сбалансировать дополнительные затраты на сокращение выбросов углерода с дополнительными выгодами для ограничения ущерба из-за изменения климата, вызывающего дополнительные расходы для промышленности.

В течение последних десятилетий было разработано несколько стратегий и технологий [1,2], касающихся улавливания и хранения двуокиси углерода, и к 2020 году ожидается, что число проектов, касающихся этой темы, удвоится, даже если в настоящее время работает мало крупных хранилищ углекислого газа. С другой стороны, в последние годы научное сообщество начало рассматривать CO2 не как дорогостоящие отходы (особенно в странах, где применяются налоги на выбросы углерода), а главным образом в качестве потенциального источника углерода, альтернативного ископаемым. Поэтому будущие перспективы сокращения выбросов углекислого газа будут касаться не только разработки более эффективных технологий хранения углекислого газа, но и разработки новых стратегий переработки CO2 в энергетическом направлении и химическом — промежуточные продукты. В этой связи преобразование СО2 в диметиловый эфир (ДМЭ) получило повышенное внимание, поскольку ДМЭ можно использовать в качестве промежуточного продукта для производства нескольких продуктов повышенной стоимостью (бензин, ароматические соединения и олефин) или в качестве альтернативного топлива, как описано ниже.

ДМЭ, простейший из простых эфиров, является ни токсичной, ни канцерогенной молекулой с температурой кипения -25 ° C, представляет собой жидкость при комнатной температуре и относительно низком давлении (≈0,5 МПа). Химические и физические свойства ДМЭ близки к жидким нефтяным газам, и опубликованные исследования показали, что технологии, разработанные для хранения и транспортировки жидкого нефтяного газа, могут быть легко использованы для ДМЭ с аналогичными инструкциями по безопасности. ДМЭ также является важным химическим промежуточным звеном для производства широко используемых химических веществ, таких как диметилсульфат, метилацетат и, как упоминалось ранее, легких олефинов и бензина. В настоящее время диметиловый эфир в основном используется в качестве аэрозольного пропеллента в аэрозольных баллонах, заменяя запрещенные озоноразрушающие хлорфторуглеродные соединения, но в последние десятилетия он получает все большее внимание также в качестве альтернативного и экологически чистого топлива [3]. В 1995 году обширная совместная исследовательская работа Amoco (в настоящее время BP), Haldor Topsоe и международной корпорации Navistar International продемонстрировала, что ДМЭ может быть надежным альтернативным топливом для дизельных двигателей с низким уровнем выбросов NOx, SOx и твердых частиц, которые будут выпускаться путем гидратации метанола. Эти исследования вновь обратили внимание на выдающиеся характеристики ДМЭ в качестве альтернативы дизельного топлива и показали полное соблюдение строгих правил Калифорнии в отношении ультранизких выбросов для транспортных средств средней грузоподъемности. Из-за масштабных изменений в топливной инфраструктуры, реализация ДМЭ для транспортных средств по-прежнему остается открытой задачей. Действительно, основным рынком диметилового эфира было смешивание диметилового эфира с жидким нефтяным газом, а Amoco запатентовала смесь диметилового эфира и жидкого нефтяного газа для автомобильных применений, в то время как другие перспективы будущего использования диметилового эфира в качестве топлива: альтернативное топливо для дизельных двигателей; топливо для выработки электроэнергии на газотурбинных установках; химический промежуточный продукт для производства олефинов и синтетического бензина. Поэтому, вместо метанола, диметиловый эфир можно рассматривать как надежный энергетический вектор будущего и как химически промежуточное звено в низкоуглеродистых процессах. В этой проблеме углекислый газ может использоваться в качестве реагента для получения метанола, а затем диметилового эфира. В частности, метанол сначала получают путем гидрирования углекислого газа, согласно следующей реакции:

Читайте также:  Все способы кирпичной кладки

После этого, ДМЭ получают через дегидратацию спирта:

Общей реакцией образования ДМЭ является:

Как показывает стехиометрия, необходимо шесть молей водорода на моль диметилового эфира, и нет возможности для производства диметилового эфира (или даже метанола) посредством гидрирования CO2, поскольку водород обычно получают из ископаемых углеводородов (главным образом из природного газа или легких углеводородов). Поэтому оптимальным вариантом является только если водород образуется из возобновляемых источников; в частности, если водород непосредственно производится с использованием возобновляемых источников энергии, гидрирование диоксида углерода станет ценной стратегией использования возобновляемых источников энергии как в химической промышленности, так и в производстве электроэнергии. Водород можно получать из возобновляемых источников несколькими способами. Нынешний подход заключается в производстве электрической энергии с использованием возобновляемых источников энергии (например, солнечной энергии) и использовании этой энергии для электролиза воды с использованием топливных элементов. Были также исследованы другие подходы к производству водорода: водород из цианобактерий или водорослей, термохимический процесс биомассы или анаэробная ферментация, а также расщепление воды посредством фотоэлектролиза. Хотя производство водорода из возобновляемых источников энергии остается открытой задачей, углеродный цикл, основанный на гидрировании CO2, можно определить пятью этапами [4]:

а) производство водорода путем расщепления воды с использованием возобновляемых источников энергии (например, солнечной энергии);

b) улавливание и безопасное хранение CO2 от выбросов электростанций или даже из атмосферы;

c) гидрирование улавливаемого СО2 для получения метанола и / или ДМЭ (предпочтительно ДМЭ в следствии малой токсичности);

d) использование ДМЭ для производства энергии или как промежуточное звено в химической промышленности;

(e) повторное использование диоксида углерода при экологически чистом сжигании ДМЭ для повторного производства.

Следуя этой стратегии и увеличивая исследования по перечисленным шагам, можно будет создать эффективную производственную систему, основанную на CO2, как для химических веществ, так и для производства энергии, снижая зависимость от ископаемых источников, а также снижая количество выбросов углекислого газа в атмосферу. Среди задач, которые все еще открыты, несмотря на то, что в последние годы было выполнено много работ, разработка высокоэффективного катализатора для гидрирования СО2 все еще является основной задачей. Так как образование ДМЭ путем гидрирования CO2 включает в себя две стадии реакции (образование метанола и дегидратацию), поэтому катализатор должен проявлять окислительно-восстановительную функцию, способную гидрировать CO2 до спирта и кислотную функцию, способную превращать спирт в эфир. Было предложено несколько способов для создания катализатора, способного производить ДМЭ посредством гидрирования СО2 в одну стадию, с хорошими характеристиками с точки зрения конверсии СО2, селективности и стабильности ДМЭ. Недавно Альваресом и др. были обсуждены [5] некоторые каталитические аспекты, касающиеся процесса процесса СО2 — диметиловой эфир, которые показали, что для достижения высокой каталитической активности необходимы дальнейшие достижения в исследованиях. Фактически, несмотря на то, что, как ожидается, катализатор на основе меди останется наиболее эффективным катализатором для стадии реакции CO2-метанол, некоторые аспекты, касающиеся бифункционального катализатора, такие как: (1) выбор кислотной функции, (2) метод, используемый для подготовка гибридного катализатора, (3) спекание частиц меди и (4) дезактивация катализатора, остаются основными открытыми проблемами с точки зрения оптимизации процесса.

  1. Borodko Y., Somorjai G. A., 1999, Catalytic hydrogenation of carbon oxides — A 10-year perspective, Applied Catalysis, A: General, 186 (1–2), 355–362.
  2. Douglas J. M., 1988, Conceptual Design of Chemical Processes, McGraw-Hill Book Co., Singapore. Gallucci F., Paturzo L., Basile A., 2004, An experimental study of CO2 hydrogenation into methanol involving a zeolite membrane reactor, Chemical Engineering and Processing: Process Intensification, 43(8), 1029–1036.
  3. Hori H., Six C., Leitner W., 2001, Kinetic study of methanol synthesis from carbon dioxide and hydrogen, Applied Organometallic Chemistry, 15(2), 121–126.
  4. Van den Berg H., 2001, Methods for process intensification projects, Proceedings 4th International Conference on Process Intensification for the Chemical Industry, BHR Group, 47–59.
Читайте также:  Каков способ теплопередачи водяного отопления излучение теплопроводность конвекция

Источник

Химики нашли способ превратить СО2 в топливо

Экология потребления.Технологии:Чтобы получить энергию, как правило, необходимо что-нибудь сжечь: обычные автомобили сжигают топливо в двигателях внутреннего сгорания, электромобили заряжают свои батареи от электричества, поступающего, например, на ТЭЦ, где сжигают природный газ, и даже нам для мышечной или умственной работы надо «сжечь» внутри себя съеденный завтрак.

Чтобы получить энергию, как правило, необходимо что-нибудь сжечь: обычные автомобили сжигают топливо в двигателях внутреннего сгорания, электромобили заряжают свои батареи от электричества, поступающего, например, на ТЭЦ, где сжигают природный газ, и даже нам для мышечной или умственной работы надо «сжечь» внутри себя съеденный завтрак.

В любом органическом топливе, будь то бензиновые углеводороды или углеводы из шоколадки, содержатся атомы углерода, которые в конце своего энергетического пути превращаются в углекислый газ. Ну а газ, в свою очередь, отправляется в атмосферу, где он может накапливаться и вызывать всякие нехорошие эффекты вроде глобального потепления.

С энергетической точки зрения углекислый газ абсолютно бесполезен, поскольку углерод в нём полностью «сгорел», прочно и неразрывно связав себя с двумя атомами кислорода.

Гореть он уже не горит, и единственное что с ним можно сделать – утопить или закопать. Утопить его можно, растворив в океане – и это действительно один из способов утилизации СО2. Другой способ – закачать его под высоким давлением под землю, желательно там, где есть нефтяные месторождения; это позволит повысить отдачу нефтяных пластов и поможет добыть больше нефти. Однако химики всё же нашли способ «сварить кашу из топора» – существует третий путь утилизации СО2, когда его превращают в топливо.

Чтобы превратить СО2 в топливо, нужно «похимичить» с молекулой углекислого газа, например, отобрать у неё один атом кислорода. Тогда углекислый газ превратится в угарный газ СО. Несмотря на то, что для большинства угарный газ – это «тот газ, от которого периодически погибают неаккуратные пользователи дровяных печей», в промышленности его используют в самых разных процессах: во-первых, его можно сжечь и получить энергию, во-вторых, его можно использовать в металлургических процессах, а в-третьих, из него можно синтезировать различные органические молекулы, в том числе и жидкое топливо. Как раз последний пункт и открывает перед углекислым газом нефтехимические перспективы.

Однако стоит заметить, что использование угарного газа в химических целях не есть что-то совсем новое. Ещё на заре ХХ века германские химики Франц Фишер и Ганс Тропш разработали способ, как из обычного угля получить жидкое топливо: сначала из каменного угля и воды получают синтез-газ – так называется смесь угарного газа и водорода, а затем с помощью катализатора из синтез-газа получают различные углеводороды.

Читайте также:  Какие существуют способы образования имен прилагательных

Этот способ был востребован, когда обычной нефти не хватало, однако со временем, во второй половине двадцатого века метод получения топлива из угля стала просто дорогой альтернативой «классическим» нефтеперерабатывающим технологиям. Но если в процессе Фишера-Тропша в качестве сырья используют каменный уголь, который сам по себе есть полезное ископаемое, то химики из Массачусетского технологического института для той же цели – получения синтез-газа – разработали способ, позволяющий делать его из «ненужного» углекислого газа.

Такие вещи невозможны без использования катализаторов, и, чтобы получить работающий катализатор, химикам порой приходится идти на самые разные хитрости. Дело в том, что, кроме определённого химического состава, для катализатора очень важна его внутренняя структура. Если говорить упрощённо, катализатор, нанесённый на ровную поверхность, может оказаться нерабочим, а вот если его нанести на пористую поверхность, и если у пор при этом будет определённый размер, то тогда он сможет заработать в полную силу.

Для того чтобы создать такой катализатор, химики взяли электропроводящий материал в качестве подложки и нанесли на него слой из полистирольных шариков диаметром около 200 нанометров. После чего пустоты, оставшиеся в пространстве между шариками, заполнили атомами серебра. (В качестве аналогии можно представить, что мы насыпали на пол слой из бильярдных шаров, а потом всё сверху залили ровным слоем расплавленного парафина.)

Теперь, чтобы получить пористый субстрат, нужно каким-то образом убрать из материала все шарики, оставив в целости оставшуюся структуру. В случае с бильярдными шарами это было бы весьма проблематично, а вот в случае с полистирольными шариками все оказалось намного проще – и в итоге после удаления полистирола на поверхности электрода получилась ячеистая структура из серебра с «сотами» определённого размера.

Подобный материал, как оказалось, хорошо превращает углекислый газ в синтез-газ, причём эффективность и селективность катализатора управляется за счёт размера сот: если на этапе синтеза катализатора взять полистирольные шарики покрупнее, то после реакции получится один состав продуктов, а если помельче – то другой. Подробно результаты исследований опубликованы в журнале Angewandte Chemie.

И вроде бы всё хорошо, и человечество должно бы праздновать победу над выбросами парниковых газов, а каждую трубу, чадящую в атмосферу продуктами сгорания, нужно оборудовать подобным серебряным катализатором, но всё-таки стоит сделать одно замечание. Один из важных законов, по которому живёт окружающий нас мир – закон сохранения: масса и энергия не возникают ниоткуда и не пропадают в никуда. Это справедливо и для атомов химических элементов, и для тепла, вырабатываемого при сжигании топлива, и для электрической энергии.

Поэтому сколько энергии получается при сжигании угарного газа до углекислого, как минимум, столько же энергии нужно затратить (упрощённо), чтобы превратить молекулу углекислого газа обратно в молекулу угарного. И очевидно, что для такой, в общем-то, «зелёной» технологии по утилизации парникового газа нужен свой источник энергии, который как минимум не «начадил» бы в атмосферу столько СО2, сколько можно было бы превратить в полезный продукт.

Откуда взять энергию для превращения одного газа в другой? Например, от ветряных или солнечных энергоустановок, которые производят энергию, но не выбрасывают в атмосферу продукты сгорания топлива – в результате это позволило бы уменьшить общее количество углекислого газа.

Забавно, что похожей деятельностью занимались древние растения и бактерии, поглощавшие находившийся тогда в избытке в атмосфере углекислый газ, и преобразовывшие его в органические вещества, ставшие потом ископаемым топливом. Возможно, что человечеству в будущем придётся заниматься чем-то похожим, но только уже с использованием химических технологий. опубликовано econet.ru

Понравилась статья? Напишите свое мнение в комментариях.
Подпишитесь на наш ФБ:

Источник

Оцените статью
Разные способы