- Математика
- Системы линейных уравнений (7 класс)
- Если несколько линейных уравнений с одними теми же неизвестными рассматривают совместно, то говорят, что это система линейных уравнений с несколькими неизвестными.
- Решить систему с двумя неизвестными – это значит найти все пары значений переменных, которые удовлетворяют каждому из заданных уравнений. Каждая такая пара называется решением системы.
- Как решить систему линейных уравнений?
- Способ уравнения коэффициентов 7 класс
- Виды химических реакций
- Коэффициенты в уравнениях химических реакций
- Алгоритм составления уравнений химических реакций
- Интересное по рубрике
- Найдите необходимую статью по тегам
- Подпишитесь на нашу рассылку
- Мы в инстаграм
- Рекомендуем прочитать
- Реальный опыт семейного обучения
Математика
58. Способ сложения и вычитания или способ уравнения коэффициентов . Решим совместно следующие 2 уравнения:
7x + 5y = 47 и 7x – 5y = 9 (1)
Мы видим, что в левой части одного уравнения входит член +5y, а в левой части другого — член –5y. Если бы пришлось эти части сложить между собою, то эти члены уничтожились бы. И этого достигнуть легко: из данных двух уравнений составим вытекающее из них новое, для чего сложим и левые части обоих уравнений между собою, и правые части между собою – результаты этих сложений, очевидно, должны быть равны между собою, т. е. получим:
(члены +5y и –5y взаимно уничтожились). Отсюда получим x = 4. Умножим затем обе части второго уравнения на –1; получим:
7x + 5y = 47
–7x + 5y = –9
и теперь опять сложим левые части между собою и правые между собою (говорят: сложим эти 2 уравнения по частям). Получим, так как члены +7x и –7x взаимно уничтожаются:
10y = 38, откуда y = 3,8
Мы могли бы взамен этого сделать и так: вернемся к уравнениям (1) и вычтем по частям (т. е. из левой части левую часть и из правой части правую часть) из первого уравнения второе. Тогда надо у всех членов 2-го уравнения переменить знаки — результат получится тот же самый.
В разобранном примере абсолютные величины коэффициентов при каждом неизвестном в каждом уравнении были равны; рассмотрим теперь пример, когда абсолютные величины этих коэффициентов неравны.
3x + 4y = 23 и 9x + 10y = 65.
Рассматривая эти уравнения, мы видим, что коэффициенты при x не равны, но что их легко сделать равными, если обе части первого уравнения умножим на 3. Сделав это, получим:
9x + 12y = 69
9x + 10y = 65
Теперь вычтем по частям из первого уравнения второе (надо у всех членов 2-го уравнения переменить знаки). Получим:
2y = 4, откуда y = 2.
Рассматривая данные уравнения, мы теперь приходим к возможности уравнять коэффициенты при y, для чего можно поступить по разному: 1) обе части 1-го уравнения умножить на 2 ½ — тогда получим:
7 ½ x + 10y = 57 ½
9x + 10y = 65
Вычтем теперь из 2-го уравнения по частям 1-е, для чего переменим знаки у всех членов 1-го уравнения (мы вычитаем из 2-го первое, а не наоборот, только для того, чтобы в левой части коэффициент при x получился положительный), получим:
1 ½ x = 7 ½, откуда x = 7 ½ : 1 ½ = 5.
2) Обе части 2-го уравнения умножим на 2/5, — получим:
3x + 4y = 23 (первое оставляем без изменения).
Вычитая по частям из 2-го уравнения первое, получим:
3/5 x = 3, откуда x = 3 : 3/5 = 5.
3) Если не желаем иметь дело с дробными коэффициентами, то найдем общее наименьшее кратное для коэффициентов при y, т. е. для чисел 4 и 10 – оно есть 20 и, умножением обеих частей 1-го уравнения и обеих частей 2-го, сведем дело к тому, чтобы в каждом уравнении коэффициентом при y служило это общее наименьшее кратное. В нашем примере для этого умножим обе части 1-го уравнения на 5 и обе части 2-го уравнения на 2. Получим:
15x + 20y = 115
18x + 20y = 130.
Опять вычтем по частям из 2-го уравнения первое, — получим:
3x = 15, откуда x = 5.
Заметим еще, что когда одно неизвестное определено, можно подстановкою получить другое. Так, мы сначала нашли y = 2. Подставим это значение в 1-ое уравнение:
3x = 23 – 8 = 15, откуда x = 5.
Коротко выполним еще один пример:
6x – 15y = 32 | · 3 | · 2
4x + 9y = 34 | · 5 | · 3
Сбоку мы отметили, что надо обе части 1-го уравнения умножить на 3 и обе части 2-го на 5 — мы имеем в виду уравнять абсолютные величины коэффициентов при y. Получим:
18x – 45y = 96.
20x + 45y = 170.
Сложим эти уравнения по частям, получим:
38x = 266 и x = 7.
Теперь умножим обе части 1-го уравнения на 2 и обе части второго на 3 (отмечено сбоку). Получим:
12x – 30y = 64
12x + 27y = 102.
Вычтем по частям из 2-го уравнения первое; получим:
57y = 38 и y = 38/57 = 2/3.
Примем этот способ к решению двух уравнений с двумя неизвестными в общем виде:
ax + by = m | · d | · c
cx + dy = n | · b | · a
Сначала умножим, как отмечено, обе части 1-го уравнения на d и обе части 2-го на b. Получим:
adx + bdy = md
cbx + =bdy = nb.
Вычтем по частям из 1-го уравнения второе, получим:
adx – cbx = md – nb.
Вынесем в левой части x за скобки, получим:
(ad – cb)x = md – nb,
x = (md – nb) / (ad – cb).
Уравняем теперь коэффициенты при x, для чего обе части 1-го уравнения умножим на c и обе части второго на a. Получим:
Вычтем по частям из 2-го уравнения первое, получим:
ady – bcy = na – mc,
(ad – bc) y = na – mc
y = (na – mc) / (ad – bc).
Мы вычитали здесь из 2-го уравнения первое, а не наоборот, с целью получить тот же знаменатель ad – bc, какой получился при определении x – a.
Источник
Системы линейных уравнений (7 класс)
Если несколько линейных уравнений с одними теми же неизвестными рассматривают совместно, то говорят, что это система линейных уравнений с несколькими неизвестными.
Решить систему с двумя неизвестными – это значит найти все пары значений переменных, которые удовлетворяют каждому из заданных уравнений. Каждая такая пара называется решением системы.
Пример:
Пара значений \(x=3\);\(y=-1\) является решением первой системы, потому что при подстановке этих тройки и минус единицы в вместо \(x\) и \(y\), оба уравнения превратятся в верные равенства \(\begin
А вот \(x=1\); \(y=-2\) — не является решением первой системы, потому что после подстановки второе уравнение «не сходится» \(\begin
Отметим, что такие пары часто записывают короче: вместо «\(x=3\); \(y=-1\)» пишут так: \((3;-1)\).
Как решить систему линейных уравнений?
Есть три основных способа решения систем линейных уравнений:
Возьмите любое из уравнений системы и выразите из него любую переменную.
Полученное выражение подставьте вместо этой переменной в другое линейное уравнение системы.
Ответ запишите парой чисел \((x_0;y_0)\)
Замечание к шагу 1: нет никакой разницы какую переменную и из какого уравнения выражать. Обычно более удобно выражать ту переменную, перед которой нет коэффициента или, говоря точнее, коэффициент которой равен единице (в примере выше это был икс в первом уравнении).
Почему так? Потому что во всех остальных случаях у нас при выражении переменной получилась бы дробное выражение . Попробуем, например, выразить икс из второго уравнения системы:
И сейчас нам нужно будет эту дробь подставлять в первое уравнение и решать то, что получиться. До верного ответа мы бы всё равно дошли, но идти было бы неудобнее
Способ алгебраического сложения.
Равносильно преобразовывая каждое уравнение в отдельности, запишите систему в виде:\(\begin
Теперь нужно сделать так, чтоб коэффициенты при одном из неизвестных стали одинаковы (например, (\(3\) и \(3\)) или противоположны по значению (например, \(5\) и \(-5\)). В нашем примере уравняем коэффициенты при игреках. Для этого первое уравнение домножим на \(2\), а второе — на \(3\).
\(\begin
Сложите (или вычтите) почленно обе части уравнения так, чтобы получилось уравнение с одним неизвестным.
Найдите неизвестное из полученного уравнения.
Подставьте найденное значение неизвестного в любое из исходных уравнений и найдите второе неизвестное.
Ответ запишите парой чисел \((x_0;y_0)\).
Замечание к шагу 3: В каком случае уравнения складывают, а в каком вычитают? Ответ прост – делайте так, чтоб пропала переменная: если «уравненные» коэффициенты имеют один и тот же знак – вычитайте, а если разные – складывайте.
Пример. Решите систему уравнений: \(\begin
Приводим систему к виду \(\begin
«Уравняем» коэффициенты при иксах. Для этого домножим второе уравнение на \(3\).
Знаки при иксах разные, поэтому чтоб иксы пропали, уравнения надо сложить.
Делим уравнение на \(8\), чтобы найти \(y\).
Игрек нашли. Теперь найдем \(x\), подставив вместо игрека \(-2\) в любое из уравнений системы.
Икс тоже найден. Пишем ответ.
Приведите каждое уравнение к виду линейной функции \(y=kx+b\).
Постройте графики этих функций. Как? Можете прочитать здесь .
Ответ: \((4;2)\)
Матхак. Если сомневаетесь в правильности ответа (неважно каким способом вы решали), проверьте подстановкой значений \(x_0\) и \(y_0\) в каждое уравнение. Если оба уравнения превратятся в верные равенства, то ответ правильный.
Пример: решая систему \(\begin
Оба уравнения сошлись, решение системы найдено верно.
Пример. Решите систему уравнений: \(\begin
Перенесем все выражения с буквами в одну сторону, а числа в другую.
Во втором уравнении каждое слагаемое — четное, поэтому упрощаем уравнение, деля его на \(2\).
Эту систему линейных уравнений можно решить любым из способов, но мне кажется, что способ подстановки здесь удобнее всего. Выразим y из второго уравнения.
Подставим \(6x-13\) вместо \(y\) в первое уравнение.
Первое уравнение превратилась в обычное линейное . Решаем его.
Сначала раскроем скобки.
Перенесем \(117\) вправо и приведем подобные слагаемые.
Поделим обе части первого уравнения на \(67\).
Ура, мы нашли \(x\)! Подставим его значение во второе уравнение и найдем \(y\).
Источник
Способ уравнения коэффициентов 7 класс
Когда химические вещества вступают во взаимодействие, химические связи между их атомами разрушаются и образуются новые, уже в других сочетаниях. В результате одни вещества превращаются в другие.
Рассмотрим реакцию горения метана, происходящую в конфорке газовой плиты:
Молекула метана (CH₄) и две молекулы кислорода (2O₂) вступают в реакцию, образуя молекулу углекислого газа (CO₂) и две молекулы воды (2H₂O). Связи между атомами углерода (С) и водорода (H) в метане, а также между атомами кислорода (O) разрываются, и образуются новые связи между атомами углерода и кислорода в молекуле углекислого газа (CO₂) и между атомами водорода и кислорода в молекуле воды (H₂O).
Картинка даёт наглядное представление о том, что произошло в ходе реакции. Но зарисовывать сложные химические процессы такими схемами неудобно. Вместо этого учёные используют уравнения химических реакций.
Химическое уравнение — это условная запись химической реакции с помощью формул и символов.
Их записывают в виде схемы, в которой отражён процесс превращения. В левой части располагаются формулы реагентов — веществ, вступающих в реакцию. Завершается уравнение продуктами реакции — веществом или веществами, которые получились в результате.
Новые вещества образуются потому, что изменяются связи между атомами, но сами атомы не возникают из ниоткуда и не исчезают в никуда. На рисунке видно, что атом углерода из состава метана перешёл в состав углекислого газа, атом водорода — в состав воды, а атомы кислорода распределились между молекулами углекислого газа и воды. Число атомов не изменилось.
Согласно закону сохранения массы, общая масса реагентов всегда равна общей массе продуктов реакции. Именно поэтому запись химической реакции называют уравнением.
Виды химических реакций
Вещества вступают в реакции по-разному, можно выделить четыре наиболее частых варианта:
- Соединение. Два или несколько реагентов образуют один продукт. В реакцию могут вступать как простые вещества, так и сложные. Например, простые вещества водород и кислород взаимодействуют и образуют сложное — воду:
Сложное вещество негашёная известь соединяется с водой, и образуется новое сложное вещество — гашёная известь:
- Разложение. Обратный процесс: одно вещество распадается на несколько более простых. Например, если нагреть известняк, получаются негашёная известь и углекислый газ:
Стрелка вверх означает, что образовался газ. Он улетучивается и больше не участвует в реакции.
- Замещение. В реакции участвуют два вещества — простое и сложное. Если атомы химического элемента в простом веществе более активны, они замещают атомы одного из менее активных химических элементов в составе сложного вещества.
В примере атомы цинка замещают атомы водорода в составе хлороводорода, и образуется хлорид цинка:
- Обмен. Два сложных вещества обмениваются составными частями, в результате получаются два новых сложных вещества. В такой реакции обязательно образуется вода, газ или осадок.
Стрелка вниз означает, что вещество выпало в осадок, поскольку оно нерастворимо.
Коэффициенты в уравнениях химических реакций
Чтобы составить уравнение химической реакции, важно правильно подобрать коэффициенты перед формулами веществ.
Коэффициент в химических уравнениях означает число молекул (формульных единиц) вещества, необходимое для реакции. Он обозначается числом перед формулой (например, 2NaCl в последнем примере).
Коэффициент не следует путать с индексом (числом под символом химического элемента, например, О₂). Индекс обозначает количество атомов этого элемента в молекуле (формульной единице).
Чтобы узнать общее число атомов элемента в формуле, нужно умножить его индекс на коэффициент вещества. В примере на картинке (2H₂O) — четыре атома водорода и два кислорода.
Подобрать коэффициент — значит определить, сколько молекул данного вещества должно участвовать в реакции, чтобы она произошла. Далее мы расскажем, как это сделать.
Алгоритм составления уравнений химических реакций
Для начала составим схему химической реакции. Например, образование оксида магния (MgO) в процессе горения магния (Mg) в кислороде (O₂). Обозначим реагенты и продукт реакции:
Чтобы схема стала уравнением, нужно расставить коэффициенты. В левой части схемы два атома кислорода, а в правой — один. Уравняем их, увеличив число молекул продукта:
Теперь число атомов кислорода до и после реакции одинаковое, а число атомов магния — нет. Чтобы уравнять их, добавим ещё одну молекулу магния. Когда количество атомов каждого из химических элементов в составе веществ уравнено, вместо стрелки можно ставить равно:
Уравнение химической реакции составлено.
Рассмотрим реакцию разложения. Нитрат калия (KNO₃) разлагается на нитрит калия (KNO₂) и кислород (О₂):
В обеих частях схемы по одному атому калия и азота, а атомов кислорода до реакции 3, а после — 4. Необходимо их уравнять.
Для начала удвоим коэффициент перед реагентом:
Теперь в левой части схемы шесть атомов кислорода, два атома калия и два атома азота. В левой по-прежнему по одному атому калия и азота и четыре атома кислорода. Чтобы уравнять их, в правой части схемы нужно удвоить коэффициент перед нитритом калия.
Снова посчитаем число атомов каждого химического элемента в составе веществ до и после реакции: два атома калия, два атома азота и шесть атомов кислорода. Равенство достигнуто.
Химические уравнения не только позволяют предсказать, что произойдёт при взаимодействии тех или иных веществ, но и помогают рассчитать их количественное соотношение, необходимое для реакции.
Учите химию вместе с домашней онлайн-школой «Фоксфорда»! По промокоду CHEMISTRY892021 вы получите бесплатный недельный доступ к курсам химии за 8 класс и 9 класс.
У нас вы сможете учиться в удобном темпе, делать упор на любимые предметы и общаться со сверстниками по всему миру.
Попробовать бесплатно
Интересное по рубрике
Найдите необходимую статью по тегам
Подпишитесь на нашу рассылку
Мы в инстаграм
Домашняя онлайн-школа
Помогаем ученикам 5–11 классов получать качественные знания в любой точке мира, совмещать учёбу со спортом и творчеством
Посмотреть
Рекомендуем прочитать
Реальный опыт семейного обучения
Звонок по России бесплатный
Пишите нам письма
Посмотреть на карте
Если вы не нашли ответ на свой вопрос на нашем сайте, включая раздел «Вопросы и ответы», закажите обратный звонок. Мы скоро свяжемся с вами.
Источник