- Умножение по-японски, или как легко и быстро перемножить числа без калькулятора
- Как умножают в японии: Учимся считать с помощью линий.
- Четыре способа умножения без калькулятора
- Елена Синекович
- Умножай на пальцах, как купец
- Умножай, как Ферроль
- Умножай, как японец
- Умножай, как итальянец
- Способы умножения
- Необычные способы умножения
- По-крестьянски
- Восточный способ
- Как работает умножение линиями?
- Жалюзи
- Какой метод умножения лучше?
- Научно-исследовательская работа «Необычные способы умножения»
Умножение по-японски, или как легко и быстро перемножить числа без калькулятора
Как умножают в японии: Учимся считать с помощью линий.
В век смартфонов-калькуляторов и голосовых помощников умножение больших чисел вручную уже кажется необычным и совершенно ненужным навыком. Но жизнь – непредсказуемая штука: никогда не знаешь, когда понадобится быстро что-то посчитать. И в этом деле идеальным помощником будет японский метод умножения (иногда его называют умножением по строкам). Все, что вам понадобится, – лист бумаги и ручка. Чтобы облегчить задачу, вы можете использовать чернила разных цветов, но это вовсе необязательно.
Давайте рассмотрим, как работает этот метод.
Посчитаем, сколько будет 12 x 13.
Первый шаг – рисуем линии. Один набор линий – для каждой «десятки» и параллельный набор – для разряда «единиц». У вас получится «квадрат», образованный одной линией для «десятков» числа 12 (зеленый цвет) + одной линией для «десятков» числа 13 (зеленый цвет) + двумя линиями для разряда «единиц» числа 12 (черный цвет) + тремя линиями для разряда «единиц» числа 13 (синий цвет). «Десятки» должны всегда располагаться слева, а прямоугольник – быть повернутым на 45 градусов.
После того как вы нанесете на лист все линии, вам останется лишь нарисовать точки в местах пересечения и их подсчитать. В правом углу квадрата получится 6 точек (пересечения двух черных и трех синих линий). Эта цифра будет означать «единицы» в полученном числе, то есть стоять на последнем месте.
В нижнем углу видим 2 точки (пересечения разряда «десятков» числа 13 и двух черных линий). В верхнем углу – 3 точки (пересечение разряда «десятков» числа 12 и трех синих линий). Теперь сложим их вместе. Полученный результат 5 будет представлять разряд «десятков» в итоговом числе.
Наконец, в левом углу получилась 1 точка. В итоговом числе цифра 1 будет представлять разряд «сотен».
Возможно, вам будет удобнее отделять разряды на квадрате изогнутыми вертикальными линиями (как показано на рисунке). В любом случае, поставив каждую цифру на свое место, вы получите: 12 x 13 = 156 .
Этот метод работает и с гораздо большими числами. Просто попробуйте!
Вот видеопример как можно посчитать: 31х32, 213 x 13 и 103х23
Источник
Четыре способа умножения без калькулятора
Елена Синекович
Не любишь математику? Ты просто не умеешь ею пользоваться! На самом деле, это увлекательная наука. И наша подборка необычных методов умножения подтверждает это.
Умножай на пальцах, как купец
Этот метод позволяет умножать числа от 6 до 9. Для начала согни обе руки в кулаки. Затем на левой руке отогни столько пальцев, на сколько первый множитель больше числа 5. На правой проделай то же самое для второго множителя. Посчитай количество разогнутых пальцев и умножь сумму на десять. А теперь перемножь сумму загнутых пальцев левой и правой руки. Сложив обе суммы, получишь результат.
Пример. Умножим 6 на 7. Шесть больше пяти на один, значит на левой руке отгибаем один палец. А семь – на два, значит на правой – два пальца. В сумме – это три, а после умножения на 10 – 30. Теперь перемножим четыре загнутых пальца левой руки и три – правой. Получим 12. Сумма 30 и 12 даст 42.
Вообще-то здесь речь идет о простой таблице умножения, которую хорошо бы знать наизусть. Но этот метод хорош для самопроверки, да и пальцы размять полезно.
Умножай, как Ферроль
Этот способ получил название по фамилии немецкого инженера, который им пользовался. Метод позволяет быстро перемножить числа от 10 до 20. Если потренируешься, то сможешь делать это даже в уме.
Суть простая. В итоге всегда будет получаться трехзначное число. Так что сначала считаем единицы, потом – десятки, затем – сотни.
Пример. Умножим 17 на 16. Чтобы получить единицы, умножаем 7 на 6, десятки – складываем произведение 1 и 6 с произведением 7 и 1, сотни – умножаем 1 на 1. В итоге получим 42, 13 и 1. Для удобства запишем их в столбик и сложим. Вот и итог!
Умножай, как японец
Этот графический способ, которым пользуются японские школьники, позволяет легко перемножить двух- и даже трехзначные числа. Чтобы опробовать его, приготовь бумагу и ручку.
Пример. Умножим 32 на 143. Для этого нарисуем сетку: первое число отразим тремя и двумя линиями с отступом по горизонтали, а второе – одной, четырьмя и тремя линиями по вертикали. В местах пересечения линий поставим точки. В итоге у нас должно получиться четырехзначное число, поэтому условно разделим таблицу на 4 сектора. И пересчитаем точки, попавшие в каждый из них. Получаем 3, 14, 17 и 6. Чтобы получить ответ, лишние единички у 14 и 17 прибавим к предыдущему числу. Получим 4, 5 и 76 – 4576.
Умножай, как итальянец
Еще один интересный графический способ используется в Италии. Пожалуй, он проще японского: точно не запутаешься при переносе десятков. Чтобы перемножить большие числа с его помощью, нужно начертить сетку. По горизонтали сверху записываем первый множитель, а по вертикали справа – второй. При этом на каждую цифру должна приходиться одна клетка.
Теперь перемножим цифры каждого ряда на цифры каждой колонки. Результат запишем в клетку (разделенную надвое) на их пересечении. Если получилось однозначное число, то в верхнюю часть клетки пишем 0, а в нижнюю – полученный результат.
Осталось сложить все числа, оказавшиеся в диагональных полосках. Начинаем с нижней правой клетки. Десятки при этом прибавляем к единицам в соседнем столбике.
Вот как мы умножили 639 на 12.
Весело, правда? Нескучной тебе математики! И помни, что гуманитарии в ИТ тоже нужны!
Источник
Способы умножения
Все знают, как умножать в столбик, немного меньше людей знают об умножении линиями, но есть и другие интересные способы.
Умножение чисел — это очень простая операция, фактически, то же самое, что и суммирование. Конечно, пока сами числа не большие.
2х3=2+2+2 (три раза по два) или 24х6=24+24+24+24+24+24 (шесть раз по 24)
То есть, знать таблицу умножения вовсе не обязательно? Да, но с ней удобнее. Например, в случае умножения чисел 235х4596, число 4596 придется сложить 235 раз! Или наоборот, 235 сложить 4596 раз…
Слово «сложить» употреблено не зря. Вот простой способ в этом убедится. Нужно взять листок бумаги сложить его 5 раз в одном направлении, а потом 3 раза в другом. Получится действие 5х3. Считаем получившиеся от сгибания прямоугольники — их 15. Это то же самое, если бы мы взяли 3 полоски ткани (или чего угодно) длинной 5 и сложили вместе.
Как ни крути, а получается — 15!
Необычные способы умножения
В школе нас учат использовать два инструмента: таблицу Пифагора (считается что таблицу умножения придумал именно этот греческий математик) и умножению «в столбик». Это действительно самые эффективные инструменты? Кроме них есть еще несколько интересных способов умножать числа. Может, какой-то из них будет проще и учить таблицу не придется?
По-крестьянски
Использовался для определения площади земельного участка. Например, имеем поле длинной 6 и шириной 5.
Чтобы узнать, сколько будет 6х5 делаем следующее: левое число делим на 2, а правое умножаем на 2, пока от левого числа не останется единица.
2/2= 1 | 10*2=20
4х5=20, все правильно, так же как и 1х20=20
Что происходит при таком способе? Мы разделяем прямоугольник пополам, пока его ширина не станет равняться единице. Делить на два не сложно.
Вот только что будет, если одна из сторон не будет делиться на 2? Будет долгий и не такой уж простой процесс.
6/2=3 | 2*2=4 → 12
3/2=1,5 | 4*2=8 → 12
1,5/2=0,75 | 8*2=16 → 12
Если в левой части четное число — эту строку не считаем, если значение меньше единицы — тоже отбрасываем, остается вторая и третья строка, а это 8+4=12. А если представить, что умножит нужно 173 на 735? Нет, такой способ умножения не самый легкий и простой.
Можно делить/умножать и на 3, но тогда нужно знать таблицу умножения «на три», тогда уж и 5 и 7 и… Да, удобнее выучить ее всю. Также, если будет необходимо перемножить большие числа, процесс будет очень длинным.
Восточный способ
То ли китайский, то ли японский способ умножения, при помощи линий, он же «графический». Его суть состоит в том, что цифры первого числа изображаются в виде параллельных линий, а второго — перпендикулярных им. Количество пересечений и является результатом умножения. То есть, здесь знать таблицу умножения не нужно, достаточно уметь суммировать. Например, так:
2 х 3 и даже 15 х 12
Японский или китайский метод, суть не меняется
Как работает умножение линиями?
Первое число (фиолетовым цветом на картинке) рисуется так: Снизу вверх, слева на право, сначала тысячи, потом сотни, десятки, единицы. Второе число (голубым цветом на картинке) рисуется наоборот: сверху-вниз.
В первом примере все просто 2 и 3. Две линии пересекают 3 другие, получается 6 точек. Во втором, сначала рисуем 15 — единицу (один десяток), потом пять линий изображающих 5 (пять единиц). Потом (12) перпендикулярно ей вторую единицу и 2 линии.
Далее нужно посчитать пересечения, но уже в обратном направлении. Начинать справа. В примере это 10, 7 и 1. Результат складывается в столбик:
Если сравнить с традиционным «столбиком», сперва может показаться, что японско-китайский метод проще…
А что делать, если нужно умножить 10 на 12? Как изобразить «ноль» линией? Никак, он участия не принимает, можно нарисовать его пунктиром и пересечение не считать, все просто…
Но вот уже случае 853х951 рисовать и считать точки придется очень много. Старый-добрый столбик опять окажется удобнее. Каждый сам может попробовать перемножить 9878 и 8794 «японским методом» и засечь необходимое время.
Японский метод с нулем
Эта методика не универсальна, совсем не подходит, когда числа достаточно большие, зато ее очень просто объяснить маленьким детям, которые еще не знают таблицу умножения.
Жалюзи
Встречается еще и название «решетки» и индийский метод умножения. Поверить в индийское происхождение проще всего, если вспомнить, кто вообще придумывал эту вашу математику в древности. Итак, чтобы умножить два числа, нужно построить матрицу (если угодно — таблицу, мы же пытаемся быть проще).
Умножаем 45 на 82
Так как в каждом числе по 2 цифры, таблица будет 2х2. Каждую ячейку нежно перечеркнуть по диагонали. Далее записываем слева-на-право, и сверху-вниз цифры 4, 5, 8, 2 напротив каждой ячейки. Начинаем умножать цифры находящиеся напротив друг-друга. 4 на 8, 5 на 8, 4 на 2 и 5 на 2.
Ну вот опять нужна таблица умножения, иначе придется долго складывать числа.
Результаты записываются в ячейки хитрым способом, десятки над диагональю, а единицы — под ней. Но, если значение меньше 10 (то есть это одна, а не две цифры), то вместо десятки верху пишется «ноль», как при умножении 4х5. Но можно оставить поле пустым.
Теперь, чтобы узнать результат, нужно посчитать сумму в каждой диагонали, как показано на картинке. Сверху-вниз:
3
0+2+4=6
8+1=9
0
В результате получаем 3690.
Тоже достаточно просто, только с небольшими значениями, для умножения трехзначных чисел придется рисовать таблицу размером 3х3=9 ячеек.
Какой метод умножения лучше?
Если перепробовать все способы умножения чисел, становится очевидно, что все представленные альтернативные методы умножения — это все варианты знакомого «столбика». Также операции разбиваются на более мелкие: сначала умножение, потом — суммирование.
Только в так называемом китайском/японском способе умножение как таковое не используется (вместо него пересечение линий) и в этом варианте действительно можно обойтись без таблицы умножения, но придется много рисовать, что повышает вероятность совершить ошибку при пересчете точек пересечения.
Есть мнение, что популярность умножения в столбик вызвана именно компактностью записи. Так на умножение требуется меньше бумаги, меньше чернил (да, чернила раньше использовались и тоже стоили денег) и соответственно времени.
Знать нетрадиционные методики интересно и даже полезно, но школьная таблица умножения, все же быстрее, а если вы знаете как умножать в столбик — это удобнее, чем любой другой способ. Если, конечно, не считать калькулятор.
Источник
Научно-исследовательская работа «Необычные способы умножения»
Муниципальное бюджетное общеобразовательное учреждение
Средняя общеобразовательная школа с. Шланлы
Муниципального района Аургазинский район РБ
«НЕОБЫЧНЫЕ СПОСОБЫ УМНОЖЕНИЯ»
2. Необычные способы умножения……………………………………….
6) Крестьянский способ умножения……………………….……….
7) Умножение способом «Маленький замок» ………….……………….
8) Умножение способом «Ревность» …………………………………….
9) Китайский способ умножения …………………………………………
10) Японский способ умножения …………………………………………
Человеку в повседневной жизни невозможно обойтись без вычислений. Поэтому на уроках математики, нас в первую очередь учат выполнять действия над числами, то есть считать. Умножаем, делим, складываем и вычитаем мы привычными для всех способами, которые изучаются в школе.
Однажды мне случайно попалась страница в Интернете с необычным способом умножения, которым пользуются дети в Китае (как там написано). Я прочитал, изучил и мне понравился этот способ. Оказалось, что можно умножать не только так как предлагают нам в учебниках математики. Мне стало интересно, а есть ли еще какие-нибудь способы вычислений. Ведь способность быстро производить вычисления вызывает откровенное удивление.
Постоянное применение современной вычислительной техники приводит к тому, что учащиеся затрудняются производить какие-либо расчеты, не имея в своем распоряжении таблиц или счетной машины. Знание упрощенных приемов вычислений дает возможность не только быстро производить простые расчеты в уме, но и контролировать, оценивать, находить и исправлять ошибки в результате механизированных вычислений. Кроме того, освоение вычислительных навыков развивает память, повышает уровень математической культуры мышления, помогает полноценно усваивать предметы физико-математического цикла.
Показать необычные способы умножения.
Ø Найти как можно больше необычных способов вычислений.
Ø Научиться их применять.
Ø Выбрать для себя самые интересные или более легкие, чем те которые предлагаются в школе, и использовать их при счете.
Мне стало интересно, знают ли современные школьники, мои одноклассники и другие, иные способы выполнения арифметических действий, кроме умножения столбиком и деления «уголком» и хотели бы узнать новые способы? Я провел устный опрос. Было опрошено 20 учащихся 5-7 классов. Этот опрос показал, что современные школьники не знают других способов выполнения действий, так как редко обращаются к материалу, находящемуся за пределами школьной программы.
( На диаграммах представлены в процентах ответ «Да» учащихся).
1) Нужно ли уметь выполнять арифметические действия с натуральными числами
2) а) Умеете ли вы умножать, складывать,
вычитать числа столбиком, делить «уголком»?
б) Знаете ли вы другие способы выполнения арифметических действий?
3) а хотели бы узнать?
Необычные способы умножения.
Те способы вычислений, которыми мы пользуемся сейчас, не всегда были так просты и удобны. В старину пользовались более громоздкими и медленными приемами. И если бы школьник 21 века мог перенестись на пять веков назад, он поразил бы наших предков быстротой и безошибочностью своих вычислений. Молва о нем облетела бы окрестные школы и монастыри, затмив славу искуснейших счетчиков той эпохи, и со всех сторон приезжали бы учиться у нового великого мастера.
Особенно трудны в старину были действия умножения и деления. Тогда не существовало одного выработанного практикой приема для каждого действия. Напротив, в ходу была одновременно чуть не дюжина различных способов умножения и деления — приемы один другого запутаннее, запомнить которые не в силах был человек средних способностей. Каждый учитель счетного дела держался своего излюбленного приема, каждый «магистр деления» (были такие специалисты) восхвалял собственный способ выполнения этого действия.
В книге В. Беллюстина «Как постепенно дошли люди до настоящей арифметики» изложено 27 способов умножения, причем автор замечает: «весьма возможно, что есть и еще способы, скрытые в тайниках книгохранилищ, разбросанные в многочисленных, главным образом, рукописных сборниках».
И все эти приемы умножения — «шахматный или органчиком», «загибанием», «крестиком», «решеткой», «задом наперед», «алмазом» и прочие соперничали друг с другом и усваивались с большим трудом.
Давайте рассмотрим наиболее интересные и простые способы умножения.
Умножение для числа 9 — 9·1, 9·2 . 9·10 — легче выветривается из памяти и труднее пересчитывается вручную методом сложения, однако именно для числа 9 умножение легко воспроизводится «на пальцах». Растопырьте пальцы на обеих руках и поверните руки ладонями от себя. Мысленно присвойте пальцам последовательно числа от 1 до 10, начиная с мизинца левой руки и заканчивая мизинцем правой руки (это изображено на рисунке).
Допустим, хотим умножить 9 на 6. Загибаем палец с номером, равным числу, на которое мы будем умножать девятку. В нашем примере нужно загнуть палец с номером 6. Количество пальцев слева от загнутого пальца показывает нам количество десятков в ответе, количество пальцев справа — количество единиц. Слева у нас 5 пальцев не загнуто, справа — 4 пальца. Таким образом, 9·6=54. Ниже на рисунке детально показан весь принцип «вычисления».
Еще пример: нужно вычислить 9·8=?. По ходу дела скажем, что в качестве «счетной машинки» не обязательно могут выступать пальцы рук. Возьмите, к примеру, 10 клеточек в тетради. Зачеркиваем 8-ю клеточку. Слева осталось 7 клеточек, справа — 2 клеточки. Значит 9·8=72. Все очень просто.
7 клеток 2 клетки.
Умножение на пальцах
Древнерусский способ умножения на пальцах является одним из наиболее употребительных методов, которым успешно пользовались на протяжении многих столетий российские купцы. Они научились умножать на пальцах однозначные числа от 6 до 9. При этом достаточно было владеть начальными навыками пальцевого счета “единицами”, “парами”, “тройками”, “четверками”, “пятерками” и “десятками”. Пальцы рук здесь служили вспомогательным вычислительным устройством.
Для этого на одной руке вытягивали столько пальцев, на сколько первый множитель превосходит число 5, а на второй делали то же самое для второго множителя. Остальные пальцы загибали. Потом бралось число (суммарное) вытянутых пальцев и умножалось на 10, далее перемножались числа, показывавшие, сколько загнуто пальцев на руках, а результаты складывались.
Например, умножим 7 на 8. В рассмотренном примере будет загнуто 2 и 3 пальца. Если сложить количества загнутых пальцев (2+3=5) и перемножить количества не загнутых (2•3=6), то получатся соответственно числа десятков и единиц искомого произведения 56 . Так можно вычислять произведение любых однозначных чисел, больше 5.
Вспомним главное правило древнеегипетской математики, в котором сказано, что умножение производится при помощи удвоения и сложения полученных результатов; то есть каждое удвоение есть сложение числа с самим собой. Поэтому интересно посмотреть на результат подобного удвоения цифр и чисел, но полученному современным методом складывания « в столбик», известному даже в начальных классах школы.
Школьники смогут научиться устно складывать и умножать миллионы, биллионы и даже секстиллионы с квадриллионами. А поможет им в этом кандидат философских наук Василий Оконешников, по совместительству изобретатель новой системы устного счёта. Учёный утверждает, что человек способен запоминать огромный запас информации, главное – как эту информацию расположить.
По мнению самого учёного, наиболее выигрышной в этом отношении является девятеричная система – все данные просто располагают в девяти ячейках, расположенных, как кнопочки на калькуляторе.
По мысли учёного, прежде чем стать вычислительным «компьютером», необходимо вызубрить созданную им таблицу. Цифры в ней распределены в девяти клетках непросто. Как утверждает Оконешников, глаз человека и его память так хитро устроены, что информация, расположенная по его методике, запоминается во-первых, быстрее, а во-вторых – намертво.
Таблица разделена на 9 частей. Расположены они по принципу мини калькулятора: слева в нижнем углу «1», справа в верхнем углу «9». Каждая часть – таблица умножения чисел от 1 до 9 (опять же в левом нижнем углу на 1, рядом правее на 2 и т. д., по той же «кнопочной» система). Как ими пользоваться?
Например, требуется умножить 9 на 842. Сразу вспоминаем большую «кнопку» 9 (она вверху справа и на ней мысленно находим маленькие кнопочки 8,4,2 (они также расположены как на калькуляторе). Им соответствуют числа 72, 36, 18. Полученные числа складываем особо: первая цифра 7 (остаётся без изменения), 2 мысленно складываем с 3, получаем 5 – это вторая цифра результата, 6 складываем с 1, получаем третью цифру -7, и остаётся последняя цифра искомого числа – 8. В результате получилось 7578.
Если при сложении двух цифр получается число, превосходящее девять, то его первая цифра прибавляется к предыдущей цифре результата, а вторая пишется на «своё» место.
С помощью матричной таблицы Оконешникова по утверждению самого автора, можно изучать и иностранные языки, и даже таблицу Менделеева. Новая методика была опробована в нескольких российских школах и университетах. Минобразования РФ разрешило публиковать в тетрадях в клеточку вместе с привычной таблицей Пифагора новую таблицу умножения – пока просто для знакомства.
Русский крестьянский способ умножения
В России 2-3 века назад среди крестьян некоторых губерний был распространен способ, который не требовал знание всей таблицы умножения. Надо было лишь уметь умножать и делить на 2. Этот способ получил название крестьянского (существует мнение, что он берет начало от египетского).
Пример: умножим 47 на 35,
— запишем числа на одной строчке, проведём между ними вертикальную черту;
— левое число будем делить на 2, правое – умножать на 2 (если при делении возникает остаток, то остаток отбрасываем);
— деление заканчивается, когда слева появится единица;
— вычёркиваем те строчки, в которых стоят слева чётные числа;
— далее оставшиеся справа числа складываем – это результат.
35 + 70 + 140 + 280 + 1120 = 1645.
Умножение способом «МАЛЕНЬКИЙ ЗАМОК»
Умножение чисел сейчас изучают в первом классе школы. А вот в Средние века совсем немногие владели искусством умножения. Редкий аристократ мог похвастаться знанием таблицы умножения, даже если он окончил европейский университет.
За тысячелетия развития математики было придумано множество способов умножения чисел. Итальянский математик Лука Пачоли в своём трактате «Сумма знаний по арифметике, отношениям и пропорциональности» (1494г.) приводит восемь различных методов умножения. Первый из них носит название «Маленький замок», а второй не менее романтичное название «Ревность или решетчатое умножение».
Преимущество способа умножения «Маленький замок» в том, что уже с самого начала определяются цифры старших разрядов, а это бывает важно, если требуется быстро оценить величину.
Цифры верхнего числа, начиная со старшего разряда, поочередно умножаются на нижнее число и записываются в столбик с добавлением нужного числа нулей. Затем результаты складываются.
Умножение чисел методом «ревность».
Второй способ носит романтическое название «ревность», или «решётчатое умножение».
Сначала рисуется прямоугольник, разделённый на квадраты, причём размеры сторон прямоугольника соответствуют числу десятичных знаков у множимого и множителя. Затем квадратные клетки, делятся по диагонали, и «…получается картинка, похожая на решётчатые ставни-жалюзи, — пишет Пачоли. – Такие ставни вешались на окна венецианских домов, мешая уличным прохожим видеть, сидящих у окон дам и монахинь».
Умножаем, например, числа 6827 и 345:
1. Вычерчиваем квадратную сетку и пишем один из номеров над колонками, а второй по высоте. В предложенном примере можно использовать одну из этих сеток.
Сетка 1 Сетка 2
2. Выбрав сетку, умножаем число каждого ряда последовательно на числа каждой колонки. В этом случае последовательно умножаем 3 на 6, на 8, на 2 и на 7. Посмотри на этой схеме, как пишется произведение в соответствующей клетке.
3. Так выглядит сетка со всеми заполненными клетками.
4. В заключение складываем числа, следуя диагональным полосам. Если сумма одной диагонали содержит десятки, то прибавляем их к следующей диагонали.
Из результатов сложения цифр по диагоналям (они выделены жёлтым фоном) составляется число 2355315, которое и является произведением чисел 6827 и 345, то есть 6827 х 345 = 2355315.
Китайский способ умножения
А теперь представим метод умножения, бурно обсуждаемый в Интернете, который называют китайским. При умножении чисел считаются точки пересечения прямых, которые соответствуют количеству цифр каждого разряда обоих множителей.
Пример: умножим 21 на 13. В первом множителе 2 десятка и 1единица, значит, строим 2 параллельные прямые и поодаль 1 прямую.
Во втором множителе 1 десяток и 3 единицы. Строим параллельно 1 и поодаль 3 прямые, пересекающие прямые первого множителя.
|