Способ умножения чисел до 100

Содержание
  1. Урок 6. Умножение в уме любых чисел до 100
  2. Универсальные методики
  3. Частные методики
  4. Тренировка
  5. Урок 5. Опорное число при умножении чисел до 100
  6. Общие правила использования опорного числа
  7. Оба числа меньше опорного (под опорным)
  8. Умножить 18*19
  9. Умножить 8*7
  10. Умножить 98*95
  11. Умножить 98*71
  12. Оба числа больше опорного (над опорным)
  13. Умножить 23*27
  14. Умножить 51*63
  15. Одно число под опорным, а другое над
  16. Умножить 45*52
  17. Умножить 91*103
  18. Только одно число близко к опорному, а другое нет
  19. Умножить 48*73
  20. Умножить 23*69
  21. Умножить 98*41
  22. Использование нескольких опорных чисел
  23. 10 математических секретов, которые научат легко считать в уме
  24. 1. Умножение на 11
  25. 2. Быстрое возведение в квадрат
  26. 3. Умножение на пять
  27. 4. Умножение на девять
  28. 5. Умножение на четыре
  29. 6. Подсчёт чаевых
  30. 7. Сложное умножение
  31. 8. Деление на пять
  32. 9. Вычитание из 1000
  33. 10. Систематизированные правила умножения
  34. БОНУС: проценты

Урок 6. Умножение в уме любых чисел до 100

Чтобы умножать любые числа до 100 в уме важно быстро подобрать нужный алгоритм. Для удобства этого подбора в данном уроке выделены наиболее удобные случаи для каждой методики умножения.

Описанные выше методики можно разделить на универсальные (подходящие для любых чисел) и частные (удобные для конкретных случаев).

Универсальные методики

Применимость универсальных методик умножения чисел до 100 такова:

Использование одного опорного числа (Урок 5):

  • все числа в диапазонах до 30, 40-60, 85-100 – если оба множителя рядом с опорным числом.
    Например: 13*17, 18*23, 29*22, 53*61, 88*97 и т.д.
  • если одно число очень близко к удобному опорному (+/- 3 от 10, 20, 50, 100), второе может быть любым.
    Например: 21*67 (21 близко к 20), 48*33 (48 близко к 50), 98*32 (98 близко к 100)

Использование двух опорных чисел (Урок 5):

  • Если одно опорное число является кратным другому и если одно из опорных чисел является удобным (10, 20, 50, 100)
    Например: 98*24, 12*44, 43*103, 23*62

Иные числа удобно умножать традиционными методами из третьего урока, когда разряды десятков и единиц не очень большие (Урок 3). Кроме того, традиционный метод удобен, когда вы не знаете, какой другой метод вам применить.

Частные методики

Также полезно помнить о частных методиках, существенно упрощающих решение некоторых примеров:

Умножение на 10, 20, 25, 50 – должно осуществляться практически на автомате (Урок 2):

  • Например: 88*25 = 2200 (деление на 4)

Умножение на 11 всегда по методике из урока 4

Числа, заканчивающиеся на 5 удобно возводить в квадрат по методу из четвёртого урока

Любые числа удобно возводить в квадрат используя формулы сокращенного умножения четверного урока

  • Например: 69*69 = (70-1) 2 = 70 2 – 70*2*1 + 1 2 = 4 900-140+1 = 4 761

Теперь, вы имеете серьезный алгоритмический аппарат для решения примеров на умножение чисел до 100. Кроме того, вы уже можете умножать и некоторые примеры с множителями больше 100. Главным фактором, влияющим на вашу способность умножать в уме, в дальнейшем должен стать опыт и тренировка. Пройти тренировку можно ниже.

Тренировка

Если вы хотите прокачать свои умения по теме данного урока, можете использовать следующую игру. На получаемые вами баллы влияет правильность ваших ответов и затраченное на прохождение время. Обратите внимание, что числа каждый раз разные.

Перед тем как начать игру, рекомендуем зарегистрироваться, чтобы результат был сохранен в вашей истории, и вы смогли бы видеть собственный прогресс.

Напоминаем, что для полноценной работы сайта вам необходимо включить cookies, javascript и iframe. Если вы ввидите это сообщение в течение долгого времени, значит настройки вашего браузера не позволяют нашему порталу полноценно работать.

Источник

Урок 5. Опорное число при умножении чисел до 100

Наиболее популярной методикой умножения больших чисел в уме является прием использования, так называемого, опорного числа. В прошлом уроке, когда показывался способ умножения чисел до 20, по сути мы использовали опорное число 10.

Также стоит отметить, что подробнее вы можете ознакомиться с методикой использования опорного числа в книге «Считайте в уме как компьютер» Билла Хэндли.

Читайте также:  Какие существуют способы временной остановки наружного кровотечения ответ

Общие правила использования опорного числа

Опорное число полезно при перемножении чисел, находящихся близко и при возведении в квадрат. Как можно использовать метод опорного числа вы уже поняли из прошлого урока, теперь давайте обобщим все сказанное.

Опорное число при умножении – это число, к которому близко находятся оба множителя и на которое удобно умножать. При умножении чисел до 100 опорными числами удобно использовать все числа кратные 10, а особенно 10, 20, 50 и 100.

Методика использования опорного числа зависит от того, являются ли множители больше или меньше опорного числа. Тут возможны три случая. Покажем, все 3 методики на примерах.

Оба числа меньше опорного (под опорным)

Допустим, мы хотим умножить 48 на 47. Эти числа находятся достаточно близко к числу 50, а следовательно удобно использовать 50 в качестве опорного числа.

Чтобы умножить 48 на 47, используя опорное число 50, нужно:

  1. Из 47 вычесть столько, сколько не хватает 48 до 50, то есть 2. Получается 45 (или из 48 вычесть 3 – это всегда одно и то же)
  2. Дальше 45 умножаем на 50 = 2250
  3. Затем прибавляем 2*3 к этому результату и вуа ля – 2 256!

Схематично в уме удобно представлять приведенную ниже табличку.

(48-3)*50 = 45*50 = 2 250

(или (47-2)*50 = 45*50 вспомните, что умножение на 5 – это тоже самое что деление на 2)

2 250 + 6 = 2 256

Опорное число пишем слева от произведения. Если числа меньше опорного, то разница между ними и опорным пишется ниже этих чисел. Справа от 48*47 пишем расчет с опорным числом, справа от остатков 2 и 3 пишем их произведение.

Если использовать упрощенную схему, то решение выглядит так: 47*48=45*50 + 6= 2 256

Посмотрим другие примеры:

Умножить 18*19

Короткая запись: 18*19 = 20*17+2 = 342

Умножить 8*7

Короткая запись: 8*7 = 10*5+6 = 56

Умножить 98*95

Короткая запись: 98*95 = 100*93 + 10 = 9 310

Умножить 98*71

Короткая запись: 98*71 = 100*69 + 58 = 6 958

Оба числа больше опорного (над опорным)

Допустим, мы хотим умножить 54 на 53. Эти числа находятся достаточно близко к числу 50, а следовательно удобно использовать 50 в качестве опорного числа. Но в отличие от предыдущих примеров, эти числа больше опорного. По сути, модель их умножения не меняется, но теперь нужно не вычитать остатки, а прибавлять.

  1. К 54 прибавить столько, на сколько 53 превышает 50, то есть 3. Получается 57 (или к 53 прибавить 4 – это всегда одно и то же)
  2. Дальше 57 умножаем на 50 = 2 850 (умножение на 50 – схоже с делением на 2)
  3. Затем прибавляем 4*3 к этому результату. Ответ: 2862

или (53+4)*50 = 57*50 (вспомните, что умножение на 5 – это тоже самое что деление на 2)

Короткое решение выглядит так: 50*57+12 = 2 862

Для наглядности еще ниже приведены примеры:

Умножить 23*27

Короткая запись: Короткая запись: 23*27 = 20*30 + 21 = 621

Умножить 51*63

Короткая запись: Короткая запись: 51*63 = 64*50 + 13 = 3 213

Одно число под опорным, а другое над

Третий случай использования опорного числа – когда одно число больше опорного, а другое меньше. Такие примеры решаются не сложнее, чем предыдущие.

Умножить 45*52

Произведение 45*52 считается так:

  1. Из 52 вычитаем 5 или к 45 прибавляем 2. В любом обоих случая получается: 47
  2. Дальше 47 умножаем на 50 = 2 350 (умножение на 50 – схоже с делением на 2)
  3. Затем вычитаем (а не прибавляем, как раньше!) 2*5. Ответ: 2 340

Короткая запись: 45*52 = 47*50-10 = 2 340

Также поступаем с подобными примерами:

Умножить 91*103

Только одно число близко к опорному, а другое нет

Как вы уже видели из примеров, опорным числом удобно пользоваться, если даже только одно число близко к опорному. Желательно, чтобы разница этого числа с опорным составляла не более 2-x или 3-х или была равна числу, на которое удобно умножать (например, 5, 10, 25 – см. второй урок)

Читайте также:  Каким способом можно убрать морщины под глазами

Умножить 48*73

Короткое решение: 48*73 = 71*50 – 23*2 = 3 504

Умножить 23*69

Короткая запись: Короткое решение: 23*69 = 72*20 + 147 = 1 587 — чуть сложнее

Умножить 98*41

Короткая запись: Короткая запись: 98*41 = 100*39 + 118 = 4 018

Таким образом, с помощью использования одного опорного числа можно умножать большую комбинацию двузначных чисел. Если у вас получается хорошо умножать на 30, 40, 60, 70 или 80 – тогда, вы сможете с помощью этой методики умножать любые числа (до 100 и даже больше).

Использование нескольких опорных чисел

Методика умножения с использованием опорных чисел позволяет использовать и 2 опорных числа. Это удобно, когда опорное число одного множителя можно выразить через опорное число другого. Например, в произведении «23 * 88» удобно использовать опорное число 20 для 23 и 80 для 88. Умножение этих чисел с помощью двух опорных удобно, потому что 20=80:4.

Методика 2-х опорных чисел заключается в том, что мы сначала делим 88 на 4 и получаем 22, производим умножение 23 на 22 и произведение умножаем снова 4. То есть, мы сначала делим произведение на 4, а потом умножаем на 4. Получается: 23*22 = 250*2+6= 506, а 506*4 = 2024 – это и есть ответ!

Для визуализации можно использовать уже привычную схему. Произведение23*88 считается так:

  1. Записываем удобное опорное число «20» и рядом приписываем множитель 4, с помощью которого можно выразить 80 через 20.
  2. Дальше делаем, как и раньше, пишем, на сколько 23 превышает 20 (3), а 88 превышает 80 (8).
  3. Выше тройки пишем произведение 3 на 4 (то есть 3 на множитель опорного).
  4. К 88 прибавляем произведение 3 на 4 и умножаем на опорное (20), получается 100*20 = 2000
  5. Прибавляем к 2000 произведением 3-х и 8-и. Результат: 2024

Источник

10 математических секретов, которые научат легко считать в уме

Те, кто в школе относился к урокам математики с пренебрежением, наверняка хотя бы несколько раз в жизни бывали в неловкой ситуации. Как посчитать, сколько оставить на чай или сумму коммунального платежа? Если знать пару простых приёмов, это займёт у вас буквально секунду. А уж во время экзамена знание правил умножения больших чисел может помочь сэкономить критически недостающее время. «Мел» совместно с Creu делится простыми секретами вычислений.

1. Умножение на 11

Все мы знаем, что при умножении на десять к числу добавляется ноль, а знаете ли вы, что существует такой же простой способ умножения двузначного числа на 11? Вот он:

Возьмите исходное число и представьте промежуток между двумя знаками (в этом примере мы используем число 52): 5_2

Теперь сложите два числа и запишите их посередине: 5_(5+2)_2.

Таким образом, ваш ответ: 572.Если при сложении чисел в скобках получается двузначное число, просто запомните вторую цифру, а единицу прибавьте к первому числу: 9_(9+9)_9 (9+1)_8_9 10_8_9 1089. Это срабатывает всегда.

2. Быстрое возведение в квадрат

Этот приём поможет быстро возвести в квадрат двузначное число, которое заканчивается на пять. Умножьте первую цифру саму на себя +1, а в конце допишите 25. Вот и всё! 252 = (2x(2+1)) & 25

3. Умножение на пять

Большинству очень просто даётся таблица умножения на пять, но когда приходится иметь дело с большими числами, сделать это становится сложнее.

Этот приём невероятно прост. Возьмите любое число и поделите пополам. Если в результате получилось целое число, припишите ноль в конце. Если нет, не обращайте внимание на запятую и в конце добавьте пять. Это срабатывает всегда:

2682×5 = (2682 / 2) & 5 или 0

2682 / 2 = 1341 (целое число, поэтому добавьте 0)

Давайте попробуем другой пример:

2943,5 (дробное число, пропустите запятую, добавьте 5)

4. Умножение на девять

Это просто. Чтобы умножить любое число от одного до девяти на девять, посмотрите на руки. Загните палец, который соответствует умножаемому числу (например, 9×3 — загните третий палец), посчитайте пальцы до загнутого пальца (в случае 9×3 — это два), затем посчитайте после загнутого пальца (в нашем случае — семь). Ответ — 27.

Читайте также:  Лавандово можжевеловый валик способ применения

5. Умножение на четыре

Это очень простой приём, хотя очевидный лишь для некоторых. Хитрость в том, что нужно просто умножить на два, а затем опять умножить на два: 58×4 = (58×2) + (58×2) = (116) + (116) = 232.

6. Подсчёт чаевых

Если вам нужно оставить 15% чаевых, есть простой способ сделать это. Высчитайте 10% (разделите число на десять), а потом добавьте получившееся число к его половине и получите ответ:

15% от $25 = (10% от 25) + ((10% от 25) / 2)

7. Сложное умножение

Если вам нужно умножать большие числа, причём одно из них — чётное, вы можете просто перегруппировать их, чтобы получить ответ:

32×125 всё равно что:

16×250 всё равно что:

8×500 всё равно что:

8. Деление на пять

На самом деле делить большие числа на пять очень просто. Нужно просто умножить на два и перенести запятую:

2. Переносим запятую: 39,0 или просто 39.

1. 2978 * 2 = 5956

9. Вычитание из 1000

Чтобы выполнить вычитание из 1000, можете пользоваться этим простым правилом. Отнимите от девяти все цифры, кроме последней. А последнюю цифру отнимите от десяти:

1. От 9 отнимите 6 = 3

2. От 9 отнимите 4 = 5

3. От 10 отнимите 8 = 2

10. Систематизированные правила умножения

Умножение на 5: Умножьте на 10 и разделите на 2.

Умножение на 6: Иногда проще умножить на 3, а потом на 2.

Умножение на 9: Умножьте на 10 и отнимите исходное число.

Умножение на 12: Умножьте на 10 и дважды прибавьте исходное число.

Умножение на 13: Умножьте на 3 и 10 раз прибавьте исходное число.

Умножение на 14: Умножьте на 7, а затем на 2.

Умножение на 15: Умножьте на 10 и 5 раз прибавьте исходное число, как в предыдущем примере.

Умножение на 16: Если хотите, 4 раза умножьте на 2. Или умножить на 8, а потом на 2.

Умножение на 17: Умножьте на 7 и 10 раз прибавьте исходное число.

Умножение на 18: Умножьте на 20 и дважды отнимите исходное число.

Умножение на 19: Умножьте на 20 и отнимите исходное число.

Умножение на 24: Умножьте на 8, а потом на 3.

Умножение на 27: Умножьте на 30 и 3 раза отнимите исходное число.

Умножение на 45: Умножьте на 50 и 5 раз отнимите исходное число.

Умножение на 90: Умножьте на 9 и припишите 0.

Умножение на 98: Умножьте на 100 и дважды отнимите исходное число.

Умножение на 99: Умножьте на 100 и отнимите исходное число.

БОНУС: проценты

Вычислить 7% от 300.

Сперва нужно понять значение слова «процент» (percent). Первая часть слова — про (per). Per = для каждого. Вторая часть — цент (cent), это как 100. Например, столетие = 100 лет. 100 центов в одном долларе и так далее. Итак, процент = для каждой сотни.

Итак, получается, что 7% от 100 будет семь. (Семь для каждой сотни, только одной сотни).

35,73% от 100 = 35,73

Но как это может быть полезным? Вернёмся к задачке 7% от 300.

7% от первой сотни равно 7. 7% от второй сотни — то же 7, и 7% от третьей сотни — все те же 7. Итак, 7 + 7 + 7 = 21. Если 8% от 100 = 8, то 8% от 50 = 4 (половина от 8).

Дробите каждое число, если нужно вычислить проценты из 100, если же число меньше 100, просто перенесите запятую влево.

8%250 =? 8 + 8 + 4 = 20,

8%25 = 2,0 (Передвигаем запятую влево).

15%300 = 15+15+15 =45

15%350 = 15+15+15+7,5 = 52,5

Также полезно знать, что вы всегда можете поменять числа местами: 3% от 100 — то же самое, что 100% от 3. А 35% от 8 — то же самое, что и 8% от 35.

Источник

Оцените статью
Разные способы