Способ улучшения коэффициента мощности

Повышение коэффициента мощности в цепях синусоидального тока

Большинство современных потребителей электрической энергии имеют индуктивный характер нагрузки, токи которой отстают по фазе от напряжения источника. Так для асинхронных двигателей, трансформаторов, сварочных аппаратов и других реактивный ток необходим для создания вращающегося магнитного поля у электрических машин и переменного магнитного потока трансформаторов.

Активная мощность таких потребителей при заданных значениях тока и напряжения зависит от cos φ:

P = UICosφ , I = P / UCosφ

Снижение коэффициента мощности приводит к увеличению тока.

Косинус фи особенно сильно снижается при работе двигателей и трансформаторов вхолостую или при большой недогрузке. Если в сети есть реактивный ток мощность генератора, трансформаторных подстанции и сетей используется не полностью. С уменьшением cos φ значительно возрастают потери энергии на нагрев проводов и катушек электрических аппаратов.

Например, если активная мощность остается постоянной, обеспечивается током 100 А при cos φ =1, то при понижении cos φ до 0,8 и той же мощности сила тока в сети возрастает в 1,25 раза ( I а = I сети х cos φ , I с = I а / cos φ ).

Потери на нагрев проводов сети и обмоток генератора (трансформатора) Pнагр = I 2 сети х Rсети пропорциональны квадрату тока, то есть они возрастают в 1,25 2 = 1,56 раза.

При cos φ = 0,5 сила тока в сети при той же активной мощности равна 100 / 0,5 = 200 А, а потери в сети возрастают в 4 раза (!). Возрастают потери напряжения в сети, что нарушает нормальную работу других потребителей.

Счетчик потребителя во всех случаях отсчитывает одно и то же количество потребляемой активной энергии в единицу времени, но в последнем случае генератор подает в сеть силу тока, в 2 раза большую, чем в первом. Нагрузка же генератора (тепловой режим) определяется не активной мощностью потребителей, а полной мощностью в киловольт-амперах, то есть произведением напряжения на силу тока, протекающего по обмоткам.

Если обозначить сопротивление проводов линии R л, то потери мощности в ней можно определить так:

Таким образом, чем выше потребителя, тем меньше потери мощности в линии и дешевле передача электроэнергии.

Коэффициент мощности показывает, как используется номинальная мощность источника. Так, для питания приемника 1000 кВт при φ = 0,5 мощность генератора должна быть S = P / cos φ = 1000 / 0 ,5 = 2000 кВА, а при cosφ = 1 S = 1000 кВА.

Следовательно, повышение коэффициента мощности увеличивает степень использования мощности генераторов.

Для повышения коэффициента мощности (cos φ ) электрических установок применяют компенсацию реактивной мощности .

Увеличения коэффициента мощности (уменьшения угла φ — сдвига фаз тока и напряжения) можно добиться следующими способами:

1) заменой мало загруженных двигателей двигателями меньшей мощности,

2) понижением напряжения

3) выключением двигателей и трансформаторов, работающих на холостом ходу,

4) включением в сеть специальных компенсирующих устройств, являющихся генераторами опережающего (емкостного) тока.

На мощных районных подстанциях для этой цели специально устанавливают синхронные компенсаторы — синхронные перевозбужденные электродвигатели.

Чтобы повысить экономичность энергетических установок наиболее часто используют батареи конденсаторов , подключаемые параллельно индуктивной нагрузке (рис. 2 а).

Рис. 2 Включение конденсаторов для компенсации реактивной мощности: а — схема, б, в — векторные диаграммы

Для компенсации cos φ в электрических установках до нескольких сотен кВА применяют косинусные конденсаторы. Их выпускают на напряжение от 0,22 до 10 кВ.

Емкость конденсатора, необходимую для повышения cosφ от существующего значения cosφ 1 до требуемого cosφ 2 , можно определить по диаграмме (рис. 2 б, в).

Читайте также:  Табличный способ решения логических задач 5 класс задачи

При построении векторной диаграммы в качестве исходного вектора принят вектор напряжения источника. Если нагрузка представляет собой индуктивный характер, то вектор тока I 1 отстает от вектора напряжения на угол φ 1 I а совпадает по направлению с напряжением, реактивная составляющая тока I р отстает от него на 90° (рис. 2 б).

После подключения к потребителю батареи конденсаторов ток I определяется как геометрическая сумма векторов I 1 и I c . При этом вектор емкостного тока опережает вектор напряжения на 90° (рис. 2, в). Из векторной диаграммы видно, что φ 2 1 , т.е. после включения конденсатора коэффициент мощности повышается от cos φ1 до cos φ2

Емкость конденсатора можно рассчитать при помощи векторной диаграммы токов (рис. 2 в) Ic = I р1 — I р = I а tg φ1 — I а tg φ 2 = ωCU

Учитывая, что P = UI а , запишем емкость конденсатора С = (I а / ωU ) х ( tg φ1 — tg φ 2 ) = (P / ωU 2 ) х ( tg φ1 — tg φ2 ) .

На практике обычно коэффициент мощности повышают не до 1,0, а до 0,90 — 0,95, так как полная компенсация требует дополнительной установки конденсаторов, что часто экономически не оправдано.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Причины, вызывающие снижение коэффициента мощности и методы его повышения

Технико-экономическое значение коэффициента мощности

Величина коэффициента мощности характеризует степень использования активной мощности источника электроэнергии. Чем выше коэффициент мощности электроприемников, тем лучше используются генераторы электрических станций и их первичные двигатели (турбины и др.), трансформаторы подстанции и электрические сети.

Низкие значения косинуса фи (cos фи) при тех же величинах активной мощности приводят к дополнительным затратам па сооружение более мощных станций, подстанций и сетей, а также к дополнительным эксплуатационным расходам.

Действительная мощность электроприемников предприятия непрерывно изменяется с течением времени. Это объясняется тем, что работа отдельных участков или цехов предприятий не совпадает во времени. Кроме того, часть оборудования может работать с неполной загрузкой или даже находиться в состоянии холостого хода. Изменение активной и реактивной мощностей электроприемников влечет за собой изменения cos фи.

Причины низкого коэффициента мощности

Основными потребителями реактивной энергии являются асинхронные электродвигатели, трансформаторы и индуктивные печи, сварочные аппараты, газоразрядные лампы и т. д.

Асинхронный электродвигатель, работающий с нагрузкой, близкой к номинальной, имеет наибольшее значение cos фи. При снижении нагрузки электродвигателя коэффициент мощности уменьшается.

Это объясняется тем, что активная мощность на зажимах электродвигателя изменяется пропорционально его загрузке, в то время как реактивная мощность вследствие незначительного изменения намагничивающего тока практически остается постоянной. При холостом ходе cos фи имеет наименьшую величину, которая в зависимости от типа электродвигателя, мощности и скорости вращения находится в пределах 0,1 — 0,3.

Силовые трансформаторы, как и асинхронные электродвигатели, при загрузке меньше чем на 75% имеют пониженное значение коэффициента мощности.

Перегруженные асинхронные электродвигатели тоже имеют низкий cos фи, что объясняется увеличением потоков магнитного рассеяния.

Электродвигатели, обладающие лучшими условиями охлаждения по сравнению с закрытыми электродвигателями, могут нести большую нагрузку (активную мощность) и будут иметь, следовательно, более высокий cos фи.

Электродвигатели с короткозамкнутым ротором вследствие меньших значений индуктивного сопротивления рассеяния имеют cos фи выше, чем электродвигатели с фазным ротором.

Значение cos фи у машин одного и того же типа возрастет с ростом номинальной мощности и скорости вращения ротора, так как при этом уменьшается относительная величина намагничивающего тока.

Читайте также:  Способы отправки электронной отчетности

Увеличение напряжения на вторичной стороне силовых трансформаторов вследствие снижения нагрузки (например, во время ночных смен и в часы обеденных перерывов) ведет к повышению напряжения по сравнению с номинальным на зажимах работающих электродвигателей. Это в свою очередь приводит к увеличению намагничивающего тока и реактивной мощности электродвигателей, что влечет за собой у меньшие коэффициента мощности.

Обточка ротора, которую производят при износе подшипников, чтобы ротор не задевал статор, приводит к увеличению, воздушного зазора между статором и ротором, что вызывает увеличение намагничивающего тока и понижение cos фи.

Уменьшение числа проводников в пазу статора при перемотке вызывает увеличение намагничивающего тока и снижение cos фи асинхронного двигателя.

Применение газоразрядных ламп (ДРЛ и люминесцентных), имеющих в цепи индуктивное сопротивление (дроссель) при отсутствии компенсирующих устройств, также снижает коэффициент мощности электроустановок (смотрите — Как устроены и работают пускорегулирующие аппараты люминесцентных ламп).

Методы повышения коэффициента мощности

Повышать коэффициент мощности электроустановки нужно в первую очередь правильной и рациональной эксплуатацией электрооборудования, т. е. естественным путем. Мощность электродвигателя следует выбирать в строгом соответствии с мощностью, необходимой для приводимого механизма, а уже установленные, но слабозагруженные электродвигатели заменять электродвигателями соответственно меньшей мощности.

Однако при этом необходимо учитывать, что иногда такая замена может привести к увеличению потерь активной энергии в самом электродвигателе и сети, если к. п. д. вновь устанавливаемого электродвигателя окажется меньше установленного ранее. Поэтому следует проверить расчетом целесообразность такой замены.

Кроме того, необходима проверка заменяющего электродвигателя по условиям допустимого нагрева и перегрузки, а иногда и времени разгона. Как правило, замене подлежат электродвигатели, загруженные меньше чем на 40%. При загрузке больше чем на 70% замена становится нерентабельной.

Во всех возможных случаях нужно отдавать предпочтение электродвигателю с короткозамкнутым, а не с фазным ротором. Нужно отказаться от применения закрытых электродвигателей, если по условиям окружающей среды допускается применение электродвигателей в открытом или защищенном исполнении.

Электродвигатели, приводящие в действие различные станки и механизмы, работают не все время с полной нагрузкой. Например, при установке новой детали для обработки на станке электродвигатель иногда работает на холостом ходу с малым cos фи. Поэтому целесообразно на время холостого хода при длительности межоперационного периода 10 сек и больше отключать электродвигатель от сети (это требование обязательно также в целях экономии активной электроэнергии).

Межоперационным периодом считается то время, которое затрачивается, чтобы отвести инструмент в его исходное положение, снять обработанную деталь со станка, установить на станке новую деталь, подвести инструмент в рабочее положение. На станках и механизмах, у которых периоды работы чередуются с межоперационными периодами, целесообразно устанавливать автоматические ограничители холостого хода.

Рекомендуется также заменять или временно отключать трансформаторы, загруженные в среднем меньше чем на 30% от их номинальной мощности.

Качественный ремонт асинхронного электродвигателя существенно влияет на повышение величины cos фи. Хорошо отремонтированный двигатель должен иметь паспортные номинальные данные. Следует тщательно следить за величиной воздушного зазора между статором и ротором, не допускай отклонения от нормы, укладывать в пазы количество активных проводников соответственно расчету. Отремонтированные электродвигатели должны подвергаться всесторонним испытаниям, включая проверку величины тока холостого хода.

В ряде случаев мероприятия по улучшению естественного коэффициента мощности не позволяют увеличить cos фи до величины 0,92 — 0,95 по условиям технологического процесса. На таких электроустановках применяются искусственные методы компенсации реактивной мощности — повышение коэффициента мощности применением специальных компенсирующих устройств.

К таким устройствам относятся: статические конденсаторы, синхронные компенсаторы и перевозбужденные синхронные электродвигатели. Однако синхронные электродвигатели и компенсаторы, изготовляемые на большие мощности, на предприятиях редко. Наибольшее распространение для повышения коэффициента мощности получили статические конденсаторы.

Читайте также:  Маринованные рыжики самый вкусный рецепт горячим способом

При соответствующем выборе емкости конденсаторов можно довести угол сдвига фаз между напряжением и током до любой требуемой величины. Уменьшение тока в питающей сети достигается за счет реактивной составляющей, которая компенсируется емкостным током батареи конденсаторов.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

2.Коэффициент мощности и способы его улучшения

Коэффициентом мощности или cos φ электрической сети называется отношение активной мощности к полной мощности нагрузки расчетного участка.

φ – коэффициент мощности;

P — активная мощность Вт;

S — полная мощность ВА;

Коэффициент мощности можно определить как расчетным путем, так и измерить специальными приборами. Только в том случае, когда нагрузка имеет исключительно активный характер, cos φ равен единице. В основном же, активная мощность меньше полной и поэтому коэффициент мощности меньше единицы.

Для повышения коэффициента мощности , как правило используют компенсирующие устройства (стабилизаторы, выпрямители тока и тп), чтобы активная мощность не сильно отличалась от полной мощности))

1.Законы коммутации. Подключение r, l –цепи к источнику постоянного напряжения.

Первый закон коммутации состоит в том, что ток в ветви с индуктивным элементом в начальный момент времени после коммутации имеет то же значение, какое он имел непосредственно перед коммутацией, а затем с этого значения он начинает плавно изменяться. Сказанное обычно записывают в виде iL(0-) = iL(0+), считая, что коммутация происходит мгновенно в момент t = 0.

Второй закон коммутации состоит в том, что напряжение на емкостном элементе в начальный момент после коммутации имеет то же значение, какое оно имело непосредственно перед коммутацией, а затем с этого значения оно начинает плавно изменяться: UC(0-) = UC(0+).

Установившийся режим –это такой режим, при котором напряжение и ток в цепи в течение длительного времени остаются постоянными или изменяются по периодическому закону.

Переходный процесс возникает при включении или отключении источника питания, а также при включении или отключении R, L, C – элементов.

Включение цепи с резистором и катушкой на постоянное напряжение

Переходный ток в цепи, изображенной на рис. 5.4, представим в виде:

1. До коммутации тока в катушке не было, следовательно: iL(0-) = 0

2. Установившаяся составляющая тока после коммутации iу = U / R.

3. Свободная составляющая тока для цепи, описываемой дифференциальным уравнением первого порядка

iсв = A e-t/τ =A ept , p = — R / L.

4. По начальным условиям определим постоянную интегрирования А и свободную составляющую тока:

i(0) = iу(0) + iсв(0); i(0) = iу(0+) + iсв(0-);

0 = U / R + A; A = -U / R; iсв = -U / R · e-t/τ.

Переходный ток получается в виде: i = U / R (1 — e-t/τ).

Напряжение на катушке:

Кривые изменения токов i, iy, iсв и напряжения на катушке uL показаны на рис. 5.5. рис.55

При включении рассматриваемого контура под постоянное напряжение ток в нем нарастает от нуля до установившегося значения. Скорость нарастания тока

изменяется по экспоненте с отрицательным показателем. В момент t = 0 эта скорость максимальна и равна U / L [А/с], со временем она падает практически до нуля, процесс выходит на установившийся режим.

В первый после коммутации момент t = 0+ ток в цепи еще равен нулю, и напряжение на катушке максимально uL = U, далее оно экспоненциально снижается до нуля.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Источник

Оцените статью
Разные способы