- Способ цепной подстановки
- Метод или способ цепных подстановок — это один из элементов методики экономического анализа, который заключается в последовательной замене плановой величины одного из алгебраических слагаемых, одного из сомножителей фактической его величиной при сохранении неизменными остальных показателей.
- Первый способ: способ цепных подстановок
Способ цепной подстановки
Типы детерминированных моделей, в которых применяется способ цепной подстановки. Сущность и правила его применения. Алгоритмы расчета влияния факторов этим спосбом в различных типах моделей.
Одним из важнейших методологических вопросов в АХД является определение величины влияния отдельных факторов на прирост результативных показателей. В детерминированном факторном анализе (ДФА) для этого используются следующие способы: цепной подстановки, индексный, абсолютных разниц, относительных разниц, пропорционального деления, интегральный, логарифмирования и др.
Первых четыре способа основываются на методе элиминирования. Элиминировать — значит устранить, отклонить, исключить воздействие всех факторов на величину результативного показателя, кроме одного. Этот метод исходит из того, что все факторы изменяются независимо друг от друга: сначала изменяется один, а все другие остаются без изменения, потом изменяются два, затем три и т.д., при неизменности остальных. Это позволяет определить влияние каждого фактора на величину исследуемого показателя в отдельности.
Метод или способ цепных подстановок — это один из элементов методики экономического анализа, который заключается в последовательной замене плановой величины одного из алгебраических слагаемых, одного из сомножителей фактической его величиной при сохранении неизменными остальных показателей.
Наиболее универсальным из них является способ цепной подстановки. Он используется для расчета влияния факторов во всех типах детерминированных факторных моделей: аддитивных, мультипликативных, кратных и смешанных (комбинированных). Этот способ позволяет определить влияние отдельных факторов на изменение величины результативного показателя путем постепенной замены базисной величины каждого факторного показателя в объеме результативного показателя на фактическую в отчетном периоде. С этой целью определяют ряд условных величин результативного показателя, которые учитывают изменение одного, затем двух, трех и т.д. факторов, допуская, что остальные не меняются. Сравнение величины результативного показателя до и после изменения уровня того или другого фактора позволяет элиминироваться от влияния всех факторов, кроме одного, и определить воздействие последнего на прирост результативного показателя.
Порядок применения этого способа рассмотрим на следующем примере (табл. 6.1).
Как нам уже известно, объем валовой продукции (ВП) зависит от двух основных факторов первого уровня: численности рабочих (ЧР) и среднегодовой выработки (ГВ). Имеем двухфакторную мультипликативную модель: ВП = ЧР х ГВ.
Алгоритм расчета способом цепной подстановки в экономическом анализе для этой модели:
Как видим, второй показатель валовой продукции отличается от первого тем, что при его расчете принята фактическая численность рабочих вместо запланированной. Среднегодовая выработка продукции одним рабочим в том и другом случае плановая. Значит за счет увеличения количества рабочих выпуск продукции увеличился на 32 000 млн руб. (192 000 — 160 000).
Третий показатель отличается от второго тем, что при расчете его величины выработка рабочих принята по фактическому уровню вместо плановой. Количество же работников в обоих случаях фактическое. Отсюда за счет повышения производительности труда объем валовой продукции увеличился на 48 000 млн руб. (240 000 — 192 000).
Таким образом, перевыполнение плана по объему валовой продукции явилось результатом влияния следующих факторов:
а) увеличения численности рабочих + 32 000 млн руб.
б) повышения уровня производительности труда + 48 000 млн руб.
Итого +80 000 млн руб.
Алгебраическая сумма влияния факторов обязательно должна быть равна общему приросту результативного показателя:
Отсутствие такого равенства свидетельствует о допущенных ошибках в расчетах.
Для наглядности результаты анализа приведены в табл. 6.2.
Если требуется определить влияние трех факторов, то в этом случае рассчитывается не один, а два условных дополнительных показателя, т.е. количество условных показателей на единицу меньше числа факторов. Проиллюстрируем это на четырехфакторной модели валовой продукции:
Исходные данные для решения задачи приведены в табл.6.1:
План по выпуску продукции в целом перевыполнен на 80 000 млн руб. (240000 — 160000), в том числе за счет изменения:
а) количества рабочих
Используя способ цепной подстановки, рекомендуется придерживаться определенной последовательности расчетов: в первую очередь нужно учитывать изменение количественных, а затем качественных показателей. Если же имеется несколько количественных и несколько качественных показателей, то сначала следует изменить величину факторов первого уровня подчинения, а потом более низкого. В приведенном примере объем производства продукции зависит от четырех факторов: количества рабочих, количества отработанных дней одним рабочим, продолжительности рабочего дня и среднечасовой выработки. Согласно схеме 5.2, количество рабочих в данном случае — фактор первого уровня подчинения, количество отработанных дней – второго уровня, продолжительность рабочего дня и среднечасовая выработка — факторы третьего уровня. Это и обусловило последовательность размещения факторов в модели и соответственно очередность их исследования.
Таким образом, применение способа или метода цепной подстановки в экономическом анализе требует знания взаимосвязи факторов, их соподчиненности, умения правильно их классифицировать и систематизировать.
Мы рассмотрели пример расчета влияния факторов на прирост результативного показателя в мультипликативных моделях.
В кратных моделях алгоритм расчета факторов на величину исследуемых показателей следующий:
где ФО — фондоотдача; ВП —валовая продукция; ОПФ — среднегодовая стоимость основных производственных фондов.
Методика расчета влияния факторов в смешанных моделях:
а) Мультипликативно-аддитивного типа П = VP П (Ц — С)
где П — сумма прибыли от реализации продукции; VP П — объем реализации продукции; Ц — цена реализации; С — себестоимость единицы продукции;
Аналогичным образом рассчитывают влияние факторов и по другим детерминированным моделям смешанного типа.
Отдельно необходимо остановиться на методике определения влияния структурного фактора на прирост результативного показателя с помощью этого способа. Например, выручка от реализации продукции (В) зависит не только от цены (Ц) и количества проданной продукции ( VPH ), но и от ее структуры (УД i ). Если возрастет доля продукции высшей категории качества, которая продается по более высоким ценам, то выручка за счет этого увеличится, и наоборот. Факторная модель этого показателя может быть записана так:
В процессе анализа необходимо элиминироваться от воздействия всех факторов, кроме структуры продукции. Для этого сравниваем следующие показатели выручки:
Разность между этими показателями учитывает изменение выручки от реализации продукции за счет изменения ее структуры (табл. 6.3.).
Из таблицы видно, что в связи с увеличением удельного веса продукции второго сорта в общем объеме его реализации выручка уменьшилась на 10 млн руб. (655 — 665). Это неиспользованный резерв предприятия.
Источник
Первый способ: способ цепных подстановок
5.
4.
3.
2.
1.
Способы факторного экономического анализа.
1.Способы цепных подстановок.
3.Способ абсолютных разниц.
4.Способ относительных разниц.
Важнейшим методологическим вопросом в экономическом анализе являются определения влияния факторов на прирост или снижение результативных показателей.
Способ цепных подстановок является самым распространенным и универсальным, так как он используется во всех типах факторных моделей и прост в применении. Этот способ позволяет определить величину влияния отдельных факторов на результат путем постепенной цепной замены базисной величины каждого факторного показателя в объеме результативного показателя на факторную величину факторных показателей в отчетном периоде. С этой целью рассчитывают ряд показателей, которые учитывают влияние одного, двух, трех … факторов, допуская что остальные факторы в данный момент неизменны. Количество условных показателей всегда должно быть на единицу меньше чем количество факторов модели. Сравнение величины результативного показателя до и после изменения уровня фактора позволяет элиминироваться от влияния других факторов и определить величину влияния исследуемого фактора на изменение результата.
Способ цепных подстановок в мультипликативных моделях:
Способ цепных подстановок в аддитивных моделях:
Способ цепных подстановок в моделях кратного типа:
Способ цепных подстановок в моделях смешанного типа:
Индексный способ основан на относительных показателях динамики, построенных сравнений, определения степени выполнения плана. Эти соотношения определяются делением показателя отчетного периода к определенной базе сравнения. С помощью индексов можно исследовать мультипликативные и кратные модели. Индексный способ отличается тем, что в результате расчетов получают относительные отклонения результативных и факторных показателей.
Индексный способ в мультипликативных моделях:
Индексный способ в моделях кратного типа
Если из числителя названных формул вычесть знаменатель, то получим результаты способа цепных подстановок.
Способ абсолютных разниц является одной из модификаций элиминирования. Применение данного способа эффективно, когда исходные данные уже содержат абсолютные отклонения факторного показателя. Как и способ цепных подстановок способ абсолютных разниц применен для расчета влияния факторов на прирост результативного показателя. В детерминированных моделях однако применение этого способа ограничивает мультипликативными моделями и реже смешанными модели типа y=a(b+c). Благодаря своей простоте способ нашел широкое применение в экономическом анализе. При его использовании величина влияния факторов рассчитываются умножением абсолютного прироста исследуемого фактора на базисную величину факторов, которые стоят справа от исследуемого и на фактическую величину отчетного периода факторов, которые стоят слева от исследуемого в исходной модели.
Способ абсолютных разниц в моделях мультипликативного типа:
Способ абсолютных разниц дает те же результаты, что и способ цепных подстановок.
Способ относительных разниц применяется в тех же моделях, что способ абсолютных разниц. Его использование эффективно в тех случаях, когда исходные данные содержат относительные отклонения факторных показателей в коэффициентах. Согласно данному способу для расчета влияния 1-го фактора необходимо базисную величину результативного показателя умножить на относительный прирост 1-го фактора. Для расчета влияния 2-го фактора нужно к базисной величине результативного показателя прибавить результативного показателя прибавить отклонение результативного показателя за 1-го фактора, а затем полученную сумму умножить на относительное отклонение 2-го фактора.
Способ относительных разниц в моделях мультипликативного типа:
Результаты расчета должны быть такие же как и при применении способа цепных подстановок и способа абсолютных разниц. Способ относительных разниц чаще всего применяется в тех случаях, когда требуется рассчитать влияния большого количества факторов, так как сокращается количество вычислений.
Интегральный способ позволяет определить однозначные и научно-обоснованные оценки влияния факторов на результат, в отличие от тех способов которые основаны на эллеминирование. Интегральный способ дает результаты вычисления независимо от местоположения факторов в модели, а дополнительный прирост результативных показателей, которые образуются от взаимодействия факторов рассчитываются между факторами пропорционально их воздействию на результативный показатель. Такие расчеты требуют знания основного математического анализа и проведение значительного объема вычисления. Поэтому в практических расчетах целесообразно находить величины влияния факторов на изменение результативных показателей по специально рабочим формулам. Интегральный способ используется во всех типах детерминированных факторных моделях.
Интегральный способ в моделях мультипликативного типа
Задача: определить влияние факторов процесса производительности труда на изменение стоимости валовой продукции предприятия.
Показатели | Услов. обознач. | Базис. период | Отчет. период | Абсол. Отклон. | Относ. откл.,% |
Стоимость ВП предприятия, тыс.руб. | ВП | ||||
Среднесписочная численность рабочих, чел. | КР | ||||
Среднее количество дней в расчете на 1 раб. | Д | 102,4 | |||
Средняя продолжительность рабочего дня, ч | П | 7,6 | -0,4 | ||
Среднечасовая выработка 1 рабочего, руб. | ЧВ | 102,8 | 22,8 | 128,5 |
Второй способ: индексный способ.
Источник