Способ сжатия текстовой информации

Сжатие текстовой информации

  • повторить и обобщить понятие о кодировании текстовой информации.

1. Организационный момент, проверка домашнего задания

2. Ознакомление учащихся с понятие «сжатие информации» на примерах (см. слайды №2 и №3).

Сжатие информации – это выбор или создание такого способа ее записи, чтобы при хранении она требовала как можно меньше места. В повседневной жизни или при изучении разных предметов мы активно пользуемся этим приемом работы с информацией. Например, число можно записать в виде текста, а можно – цифрами. Отдельные слова можно сокращать, и таким образом запись текста станет короче. Из курса истории, возможно, вам известно, что в древнерусских документах слова писались без пробелов. Трудно сказать, почему так случилось, но можно быть уверенными в том, что такая запись позволяет уместить немного больше текста на странице. Во многих восточных языках присутствуют иероглифы, которые заменяют при письме не отдельные буквы, а целые слова или даже предложения. В математике применяются различные сокращения для часто используемых слов «принадлежит», «существует», «параллельно», «больше», «меньше» и других.
Работа по карточкам (Приложение 1)учащимся предлагается вспомнить какие способы сжатия текстовой информации они могли встречать в младшей школе. Обращается внимание, что не всякое сжатие обратимо, то есть не всегда возможно по сжатой информации восстановить ее оригинал.

3. Метод Шеннона-Фано (по презентации Приложение 2, см. слайды №№ 4-9)

Как мы уже видели при решении задач, информацию нельзя сжимать до бесконечности. То есть в какой-то момент должна появиться своего рода граница, при сжатии дальше которой восстановление информации неоднозначно или просто невозможно. То есть хотелось бы, чтобы выбранный нами способ кодирования был оптимальным: с одной стороны, чтобы обеспечивалось максимально возможное сжатие, с другой стороны, чтобы записанная таким образом информация не теряла свою полноту. Одним из методов, обеспечивающих такое оптимальное кодирование отдельных символов является метод Шеннона-Фано.
Суть метода состоит в следующем: пусть дан некоторый алфавит (конечный набор символов, который будет использован для написания текста). Пусть также дано сообщение. Какие-то символы в сообщении обычно встречаются чаще, какие-то – реже. Для часто используемых символов создадим более короткие коды, для реже используемых – длинные (слайд №4 – частота использования букв русского языка).
Для начала, в качестве повторения, оценим (например, по формуле Хартли) сколько бит необходимо отвести для записи кода одного символа, и создадим «обычные» коды равной длины (слайд №5).

Теперь подсчитаем для каждого символа какую часть сообщения он занимает (проверка: сумма всех таких дробей должна быть равна единице – целому сообщению). Сведем наши данные в таблицу и упорядочим ее по убыванию долей (слайд №6).

Далее, разделим таблицу на две части, чтобы сумма долей всех символов в одной была как можно ближе к сумме долей всех символов другой. Пусть коды всех символов из первой части начинаются на 0, коды всех символов из второй – на 1 (слайд №7). Если в какой-то части находится более одного символа, то повторим для нее процесс деления, находя вторую, третью и так далее цифры кода. Как только для всех символов найдены коды – процесс завершен (слайды №8 и №9)
Осталось только подчитать количество бит, которые необходимы для представления сообщения в новом коде (слайд №10).

4. Закрепление пройденного материала, решение задач (слайд №11)

Источник

3.1. Сжатие текстовой информации

Сжатием информации в памяти компьютера называ­ют такое ее преобразование, которое ведет к сокраще­нию объема занимаемой памяти при сохранении зако­дированного содержания. Существуют разные способы сжатия для разных типов данных. Только для сжатия графической информации используется около десятка различных методов. Здесь мы рассмотрим один из спо­собов сжатия текстовой информации.

В восьмиразрядной таблице символьной кодировки (например, ASCII) каждый символ кодируется восемью битами и, следовательно, занимает в памяти 1 байт. В разделе 1.3 нашего учебника рассказывалось о том, что частота встречаемости разных букв (знаков) в тексте разная. Там же было показано, что информационный вес символов тем больше, чем меньше его частота встре­чаемости. С этим обстоятельством и связана идея сжа­тия текста в компьютерной памяти: отказаться от коди­рования всех символов кодами одинаковой длины. Сим­волы с меньшим информационным весом, т.е. часто встречающиеся, кодировать более коротким кодом по сравнению с реже встречающимися символами. При таком подходе можно существенно сократить объем общего кода текста и, соответственно, места, занимае­мого им в памяти компьютера.

Такой подход известен давно. Он используется в ши­роко известной азбуке Морзе, несколько кодов которой приведены в табл. 3.1, где «точка» кодируется нулем, а «тире» — единицей.

Как видно из этого примера и табл. 3.1, чаще встре­чающиеся буквы имеют более короткий код.

В отличие от кодов равной длины, которые использу­ются в стандарте ASCII, в этом случае возникает про­блема разделения между кодами отдельных букв. В аз­буке Морзе эта проблема решается с помощью «паузы» (пробела), которая, по сути, является третьим симво­лом алфавита Морзе, т.е. алфавит Морзе не двух-, а трех-символьный.

А как быть с компьютерной кодировкой, где исполь­зуется двоичный алфавит? Одним из простейших, но весьма эффективных способов построения кодов разной длины, не требующих специального разделителя, явля­ется алгоритм Д.Хаффмена (D.A. Huffman, 1952 г.). С помощью этого алгоритма строится двоичное дерево, которое позволяет однозначно декодировать двоичный код, состоящий из символьных кодов различной длины. Двоичным называется дерево, из каждой вершины ко­торого выходят две ветви. На рис. 3.2 приведен при­мер такого дерева, постро­енного для алфавита англий­ского языка с учетом часто­ты встречаемости его букв. Полученные, таким обра­зом, коды можно свести в таблицу.

Читайте также:  Народный способ лечения опущения матки

С помощью табл. 3.2 легко кодировать текст. Так, например, строка из 29 знаков

WENEEDMOR ESNOWFORBE TTERSKIING преобразуется в код: 011101 100 1100 100 100 110110001111101011100 ОНО 1100 1110 011101 01001 1110 1011 011100 100 001001 100 10110110 110100011 1010 1010 1100 00001, который при размещении его в памяти побайтно при­мет вид:

01110110 01100100 10011011 00011111 01011100 01101100 11100111 01010011 11010110 1110010000100110 01011011 01101000 11101010 10110000 001

Таким образом, текст, занимающий в кодировке ASCII 29 байт, в кодировке Хаффмена займет только 16 байт.

Обратная же задача — переход от кодов Хаффмена к буквам английского алфавита — осуществляется с помо­щью двоичною дерева (см. рисунок). При этом переко­дировка происходит путем сканирования текста слева на­право с первого разряда, продвигаясь по соответствую­щим (имеющим тот же двоичный код) ветвям дерева до тех пор, пока не попадем в концевую вершину с буквой. После выделения в коде буквы процесс раскодирования следующей буквы начинаем снова с вершины двоичного дерева.

Нетрудно догадаться, что изображенное дерево пред­ставляет собой сокращенный вариант кода Хаффмена. В полном объеме в нем должны быть учтены все возмож­ные символы, встречающиеся в тексте: пробелы, знаки препинания, скобки и др.

В программах, сжимающих текст — архиваторах, таблицу частоты встречаемости символов строят для каждого обрабатываемого текста, а затем формируют коды разной длины типа кодов Хаффмена. В таком слу­чае сжатие текста становится еще более эффективным, так как кодирование настраивается именно на данный текст. И чем размер текста больше, тем эффект сжа­тия значительнее.

Сжатием информации называют такое ее преобразо­вание, которое ведет к сокращению объема занимаемой памяти при сохранении закодированного содержания.

Идея способа сжатия текста: длина кода символа уменьшается с уменьшением его информационного веса, т.е. с увеличением частоты встречаемости в тексте.

Алгоритм сжатия по Хаффмену представляется в виде двоичного дерева.

Архиваторы, использующие алгоритм Хаффмена, строят свое двоичное дерево кодирования для каждого текста.

Вопросы и задания

В чем различие кодов постоянной и переменной длины?

За счет чего коды переменной длины позволяют «сжимать» текст?

Закодируйте с помощью ASCII-кодов и кодов Хафф­мена следующий текст: HAPPYNEWYEAR. Подсчитай­те в обоих случаях требуемый объем памяти.

4. Раскодируйте с помощью двоичного дерева (см.рисунок) следующий код:

11110111 10111100 00011100 00101100 10010011 01110100 11001111 11101101 001100

Источник

Сжатие информации без потерь. Часть первая

Доброго времени суток.
Сегодня я хочу коснуться темы сжатия данных без потерь. Несмотря на то, что на хабре уже были статьи, посвященные некоторым алгоритмам, мне захотелось рассказать об этом чуть более подробно.
Я постараюсь давать как математическое описание, так и описание в обычном виде, для того, чтобы каждый мог найти для себя что-то интересное.

В этой статье я коснусь фундаментальных моментов сжатия и основных типов алгоритмов.

Сжатие. Нужно ли оно в наше время?

Разумеется, да. Конечно, все мы понимаем, что сейчас нам доступны и носители информации большого объема, и высокоскоростные каналы передачи данных. Однако, одновременно с этим растут и объемы передаваемой информации. Если несколько лет назад мы смотрели 700-мегабайтные фильмы, умещающиеся на одну болванку, то сегодня фильмы в HD-качестве могут занимать десятки гигабайт.
Конечно, пользы от сжатия всего и вся не так много. Но все же существуют ситуации, в которых сжатие крайне полезно, если не необходимо.

  • Пересылка документов по электронной почте (особенно больших объемов документов с использованием мобильных устройств)
  • При публикации документов на сайтах, потребность в экономии трафика
  • Экономия дискового пространства в тех случаях, когда замена или добавление средств хранения затруднительно. Например, подобное бывает в тех случаях, когда выбить бюджет под капитальные расходы непросто, а дискового пространства не хватает

Конечно, можно придумать еще множество различных ситуаций, в которых сжатие окажется полезным, но нам достаточно и этих нескольких примеров.

Все методы сжатия можно разделить на две большие группы: сжатие с потерями и сжатие без потерь. Сжатие без потерь применяется в тех случаях, когда информацию нужно восстановить с точностью до бита. Такой подход является единственно возможным при сжатии, например, текстовых данных.
В некоторых случаях, однако, не требуется точного восстановления информации и допускается использовать алгоритмы, реализующие сжатие с потерями, которое, в отличие от сжатия без потерь, обычно проще реализуется и обеспечивает более высокую степень архивации.

Сжатие с потерями
Лучшие степени сжатия, при сохранении «достаточно хорошего» качества данных. Применяются в основном для сжатия аналоговых данных — звука, изображений. В таких случаях распакованный файл может очень сильно отличаться от оригинала на уровне сравнения «бит в бит», но практически неотличим для человеческого уха или глаза в большинстве практических применений.
Сжатие без потерь
Данные восстанавливаются с точностью до бита, что не приводит к каким-либо потерям информации. Однако, сжатие без потерь показывает обычно худшие степени сжатия.
Читайте также:  Структуры предусмотреть способ отметки ее как не содержащей данных т е пустой

Итак, перейдем к рассмотрению алгоритмов сжатия без потерь.

Универсальные методы сжатия без потерь

В общем случае можно выделить три базовых варианта, на которых строятся алгоритмы сжатия.
Первая группа методов – преобразование потока. Это предполагает описание новых поступающих несжатых данных через уже обработанные. При этом не вычисляется никаких вероятностей, кодирование символов осуществляется только на основе тех данных, которые уже были обработаны, как например в LZ – методах (названных по имени Абрахама Лемпеля и Якоба Зива). В этом случае, второе и дальнейшие вхождения некой подстроки, уже известной кодировщику, заменяются ссылками на ее первое вхождение.

Вторая группа методов – это статистические методы сжатия. В свою очередь, эти методы делятся на адаптивные (или поточные), и блочные.
В первом (адаптивном) варианте, вычисление вероятностей для новых данных происходит по данным, уже обработанным при кодировании. К этим методам относятся адаптивные варианты алгоритмов Хаффмана и Шеннона-Фано.
Во втором (блочном) случае, статистика каждого блока данных высчитывается отдельно, и добавляется к самому сжатому блоку. Сюда можно отнести статические варианты методов Хаффмана, Шеннона-Фано, и арифметического кодирования.

Третья группа методов – это так называемые методы преобразования блока. Входящие данные разбиваются на блоки, которые затем трансформируются целиком. При этом некоторые методы, особенно основанные на перестановке блоков, могут не приводить к существенному (или вообще какому-либо) уменьшению объема данных. Однако после подобной обработки, структура данных значительно улучшается, и последующее сжатие другими алгоритмами проходит более успешно и быстро.

Общие принципы, на которых основано сжатие данных

Все методы сжатия данных основаны на простом логическом принципе. Если представить, что наиболее часто встречающиеся элементы закодированы более короткими кодами, а реже встречающиеся – более длинными, то для хранения всех данных потребуется меньше места, чем если бы все элементы представлялись кодами одинаковой длины.
Точная взаимосвязь между частотами появления элементов, и оптимальными длинами кодов описана в так называемой теореме Шеннона о источнике шифрования(Shannon’s source coding theorem), которая определяет предел максимального сжатия без потерь и энтропию Шеннона.

Немного математики

Если вероятность появления элемента si равна p(si), то наиболее выгодно будет представить этот элемент — log2p(si) битами. Если при кодировании удается добиться того, что длина всех элементов будет приведена к log2p(si) битам, то и длина всей кодируемой последовательности будет минимальной для всех возможных методов кодирования. При этом, если распределение вероятностей всех элементов F = i)> неизменно, и вероятности элементов взаимно независимы, то средняя длина кодов может быть рассчитана как

Это значение называют энтропией распределения вероятностей F, или энтропией источника в заданный момент времени.
Однако обычно вероятность появления элемента не может быть независимой, напротив, она находится в зависимости от каких-то факторов. В этом случае, для каждого нового кодируемого элемента si распределение вероятностей F примет некоторое значение Fk, то есть для каждого элемента F= Fk и H= Hk.

Иными словами, можно сказать, что источник находится в состоянии k, которому соответствует некий набор вероятностей pk(si) для всех элементов si.

Поэтому, учитывая эту поправку, можно выразить среднюю длину кодов как

Где Pk — вероятность нахождения источника в состоянии k.

Итак, на данном этапе мы знаем, что сжатие основано на замене часто встречающихся элементов короткими кодами, и наоборот, а так же знаем, как определить среднюю длину кодов. Но что же такое код, кодирование, и как оно происходит?

Кодирование без памяти

Коды без памяти являются простейшими кодами, на основе которых может быть осуществлено сжатие данных. В коде без памяти каждый символ в кодируемом векторе данных заменяется кодовым словом из префиксного множества двоичных последовательностей или слов.
На мой взгляд, не самое понятное определение. Рассмотрим эту тему чуть более подробно.

Пусть задан некоторый алфавит , состоящий из некоторого (конечного) числа букв. Назовем каждую конечную последовательность символов из этого алфавита (A=a1, a2,… ,an) словом, а число n — длиной этого слова.

Пусть задан также другой алфавит. Аналогично, обозначим слово в этом алфавите как B.

Введем еще два обозначения для множества всех непустых слов в алфавите. Пусть — количество непустых слов в первом алфавите, а — во втором.

Пусть также задано отображение F, которое ставит в соответствие каждому слову A из первого алфавита некоторое слово B=F(A) из второго. Тогда слово B будет называться кодом слова A, а переход от исходного слова к его коду будет называться кодированием.

Поскольку слово может состоять и из одной буквы, то мы можем выявить соответствие букв первого алфавита и соответствующих им слов из второго:
a1 B1
a2 B2

an Bn

Это соответствие называют схемой, и обозначают ∑.
В этом случае слова B1, B2,…, Bn называют элементарными кодами, а вид кодирования с их помощью — алфавитным кодированием. Конечно, большинство из нас сталкивались с таким видом кодирования, пусть даже и не зная всего того, что я описал выше.

Итак, мы определились с понятиями алфавит, слово, код, и кодирование. Теперь введем понятие префикс.

Пусть слово B имеет вид B=B’B». Тогда B’ называют началом, или префиксом слова B, а B» — его концом. Это довольно простое определение, но нужно отметить, что для любого слова B, и некое пустое слово ʌ («пробел»), и само слово B, могут считаться и началами и концами.

Итак, мы подошли вплотную к пониманию определения кодов без памяти. Последнее определение, которое нам осталось понять — это префиксное множество. Схема ∑ обладает свойством префикса, если для любых 1≤i, j≤r, i≠j, слово Bi не является префиксом слова Bj.
Проще говоря, префиксное множество – это такое конечное множество, в котором ни один элемент не является префиксом (или началом) любого другого элемента. Простым примером такого множества является, например, обычный алфавит.

Читайте также:  Засолка грибов холодным горячим способом

Итак, мы разобрались с основными определениями. Так как же происходит само кодирование без памяти?
Оно происходит в три этапа.

  1. Составляется алфавит Ψ символов исходного сообщения, причем символы алфавита сортируются по убыванию их вероятности появления в сообщении.
  2. Каждому символу ai из алфавита Ψ ставится в соответствие некое слово Bi из префиксного множества Ω.
  3. Осуществляется кодирование каждого символа, с последующим объединением кодов в один поток данных, который будет являться результатам сжатия.

Одним из канонических алгоритмов, которые иллюстрируют данный метод, является алгоритм Хаффмана.

Алгоритм Хаффмана

Алгоритм Хаффмана использует частоту появления одинаковых байт во входном блоке данных, и ставит в соответствие часто встречающимся блокам цепочки бит меньшей длины, и наоборот. Этот код является минимально – избыточным кодом. Рассмотрим случай, когда, не зависимо от входного потока, алфавит выходного потока состоит из всего 2 символов – нуля и единицы.

В первую очередь при кодировании алгоритмом Хаффмана, нам нужно построить схему ∑. Делается это следующим образом:

  1. Все буквы входного алфавита упорядочиваются в порядке убывания вероятностей. Все слова из алфавита выходного потока (то есть то, чем мы будем кодировать) изначально считаются пустыми (напомню, что алфавит выходного потока состоит только из символов <0,1>).
  2. Два символа aj-1 и aj входного потока, имеющие наименьшие вероятности появления, объединяются в один «псевдосимвол» с вероятностью p равной сумме вероятностей входящих в него символов. Затем мы дописываем 0 в начало слова Bj-1, и 1 в начало слова Bj, которые будут впоследствии являться кодами символов aj-1 и aj соответственно.
  3. Удаляем эти символы из алфавита исходного сообщения, но добавляем в этот алфавит сформированный псевдосимвол (естественно, он должен быть вставлен в алфавит на нужное место, с учетом его вероятности).

Шаги 2 и 3 повторяются до тех пор, пока в алфавите не останется только 1 псевдосимвол, содержащий все изначальные символы алфавита. При этом, поскольку на каждом шаге и для каждого символа происходит изменение соответствующего ему слова Bi (путем добавление единицы или нуля), то после завершения этой процедуры каждому изначальному символу алфавита ai будет соответствовать некий код Bi.

Для лучшей иллюстрации, рассмотрим небольшой пример.
Пусть у нас есть алфавит, состоящий из всего четырех символов — < a1, a2, a3, a4>. Предположим также, что вероятности появления этих символов равны соответственно p1=0.5; p2=0.24; p3=0.15; p4=0.11 (сумма всех вероятностей, очевидно, равна единице).

Итак, построим схему для данного алфавита.

  1. Объединяем два символа с наименьшими вероятностями (0.11 и 0.15) в псевдосимвол p’.
  2. Удаляем объединенные символы, и вставляем получившийся псевдосимвол в алфавит.
  3. Объединяем два символа с наименьшей вероятностью (0.24 и 0.26) в псевдосимвол p».
  4. Удаляем объединенные символы, и вставляем получившийся псевдосимвол в алфавит.
  5. Наконец, объединяем оставшиеся два символа, и получаем вершину дерева.

Если сделать иллюстрацию этого процесса, получится примерно следующее:


Как вы видите, при каждом объединении мы присваиваем объединяемым символам коды 0 и 1.
Таким образом, когда дерево построено, мы можем легко получить код для каждого символа. В нашем случае коды будут выглядить так:

Поскольку ни один из данных кодов не является префиксом какого-нибудь другого (то есть, мы получили пресловутое префиксное множество), мы можем однозначно определить каждый код в выходном потоке.
Итак, мы добились того, что самый частый символ кодируется самым коротким кодом, и наоборот.
Если предположить, что изначально для хранения каждого символа использовался один байт, то можно посчитать, насколько нам удалось уменьшить данные.

Пусть на входу у нас была строка из 1000 символов, в которой символ a1 встречался 500 раз, a2 — 240, a3 — 150, и a4 — 110 раз.

Изначально данная строка занимала 8000 бит. После кодирования мы получим строку длинной в ∑pili = 500 * 1 + 240 * 2 + 150 * 3 + 110 * 3 = 1760 бит. Итак, нам удалось сжать данные в 4,54 раза, потратив в среднем 1,76 бита на кодирование каждого символа потока.

Напомню, что согласно Шеннону, средняя длина кодов составляет . Подставив в это уравнение наши значения вероятностей, мы получим среднюю длину кодов равную 1.75496602732291, что весьма и весьма близко к полученному нами результату.
Тем не менее, следует учитывать, что помимо самих данных нам необходимо хранить таблицу кодировки, что слегка увеличит итоговый размер закодированных данных. Очевидно, что в разных случаях могут с использоваться разные вариации алгоритма – к примеру, иногда эффективнее использовать заранее заданную таблицу вероятностей, а иногда – необходимо составить ее динамически, путем прохода по сжимаемым данным.

Заключение

Итак, в этой статье я постарался рассказать об общих принципах, по которым происходит сжатие без потерь, а также рассмотрел один из канонических алгоритмов — кодирование по Хаффману.
Если статья придется по вкусу хабросообществу, то я с удовольствием напишу продолжение, так как есть еще множество интересных вещей, касающихся сжатия без потерь; это как классические алгоритмы, так и предварительные преобразования данных (например, преобразование Барроуза-Уилира), ну и, конечно, специфические алгоритмы для сжатия звука, видео и изображений (самая, на мой взгляд, интересная тема).

Источник

Оцените статью
Разные способы