Понятие о предварительно напряженных железобетонных конструкциях
Основными достоинствами железобетона являются: высокая прочность, огнестойкость, долговечность, простота формообразования. Бетонная балка (рис. ниже), испытывающая при изгибе растяжение ниже нейтральной оси и сжатие выше нее, имеет низкую несущую способность вследствие слабого сопротивления бетона растяжению. При этом прочность бетона в сжатой зоне используется не полностью. В связи с этим неармированный бетон не рекомендуется применять в конструкциях, предназначенных для работы на изгиб или растяжение, так как размеры таких элементов были бы непомерно большими.
Бетонные конструкции применяют преимущественно при их работе на сжатие (стены, фундаменты, подпорные сооружения, устой и др.) и только иногда при работе на изгиб при малых растягивающих напряжениях, не превышающих предела прочности бетона при растяжении.
Железобетонные конструкции, усиленные в растянутой зоне арматурой, обладают значительно более высокой несущей способностью. Так, несущая способность железобетонной балки (рис. ниже) с уложенной внизу арматурой в 10-20 раз больше, чем несущая способность бетонной балки таких же размеров. При этом прочность бетона в сжатой зоне балки используется полностью.
Схемы работы элементов под нагрузкой
В качестве арматуры применяют стальные стержни, проволоки, прокатные профили, а также стекловолокно, синтетические материалы, деревянные бруски, бамбуковые стволы.
Конструкции армируют не только при их работе на растяжение и изгиб, но и на сжатие (рис. выше). Поскольку сталь имеет высокое сопротивление растяжению и сжатию, включение ее в сжатые элементы значительно повышает их несущую способность. Совместная работа таких различных по свойствам материалов, как бетон и сталь, обеспечивается следующими факторами:
- сцеплением арматуры с бетоном, возникающим при твердении бетонной смеси; благодаря сцеплению оба материала деформируются совместно;
- близкими по значению коэффициентами линейных температурных деформаций (для бетона 7·10 -6 -10·10 -6 1/град, для стали 12·10 -6 1/град), что исключает появление начальных напряжений в материалах и проскальзывание арматуры в бетоне при изменениях температуры до 100 °С;
- надежной защитой стали, заключенной в плотный бетон, от коррозии, непосредственного действия огня и механических повреждений.
Особенностью железобетонных конструкций является возможность образования трещин в растянутой зоне при действии внешних нагрузок. Раскрытие этих трещин во многих конструкциях в стадии эксплуатации невелико (0,1-0,4 мм) и не вызывает коррозии арматуры или нарушения нормальной работы конструкции. Однако имеются конструкции и сооружения, в которых по эксплуатационным условиям образование трещин недопустимо (например, напорные трубопроводы, лотки, резервуары и т. п.) или ширина раскрытия должна быть уменьшена. В этом случае те зоны элемента, в которых под действием эксплуатационных нагрузок появляются растягивающие усилия, заранее (до приложения внешних нагрузок) подвергают интенсивному обжатию путем предварительного натяжения арматуры. Такие конструкции называют предварительно напряженными. Предварительное обжатие конструкций выполняют в основном двумя способами: натяжением арматуры на упоры (до бетонирования) и на бетон (после бетонирования).
В первом случае перед бетонированием конструкции арматуру натягивают и закрепляют на упорах или торцах формы (рис. ниже). Затем бетонируют элемент. После приобретения бетоном необходимой прочности для восприятия сил предварительного обжатия (передаточная прочность) арматуру освобождают от упоров и она, стремясь укоротиться, сжимает бетон. Передача усилия на бетон происходит благодаря сцеплению между арматурой и бетоном, а также посредством специальных анкерных устройств, находящихся в бетоне конструкции, если сцепления недостаточно.
Во втором случае сначала изготовляют бетонный или слабоармированный элемент с каналами или пазами (рис. ниже). При достижении бетоном требуемой передаточной прочности в каналы (пазы) заводят арматуру, натягивают ее с упором натяжного приспособления на торец элемента и заанкериваюг. Таким образом, бетон оказывается обжатым. Для создания сцепления арматуры с бетоном в каналы инъектируют цементный или цементно-песчаный раствор. Если напрягаемая арматура располагается на наружной поверхности элемента (кольцевая арматура трубопроводов, резервуаров и т. п.), то навивка ее с одновременным обжатием бетона производится специальными навивочными машинами. После натяжения арматуры на поверхность элемента наносят торкретированием защитный слой бетона. Натяжение арматуры может производиться механическим, электротермическим, комбинированным и физико-химическим способами.
Способы создания предварительного напряжения
а — натяжение на упоры; б — натяжение на бетон; I — натяжение арматуры и бетонирование элемента; II, IV — готовый элемент; III — элемент во время натяжения арматуры; 1 — упор; 2 — домкрат; 3 — анкер
При механическом способе арматуру натяг ивают гидравлическими или винтовыми домкратами, намоточными машинами и другими механизмами. При электротермическом способе арматуру нагревают электрическим током до 300-350 °С, заводят в форму и закрепляют на упорах. В процессе остывания арматура укорачивается и получает предварительные растягивающие напряжения. Комбинированный способ натяжения сочетает электротермический и механический способы натяжения арматуры, осуществляемые одновременно. При физико-химическом способе натяжение арматуры достигается в результате расширения бетона, приготовленного на специальном напрягающем цементе (НЦ), в процессе его гидротермической обработки.
Арматура, заложенная в бетоне, препятствует увеличению его объема и растягивается, а в бетоне возникают сжимающие напряжения. Натяжение арматуры на упоры производится механическим, электротермическим или комбинированным способами, а на бетон — только механическим способом.
Основное достоинство предварительно напряженных конструкций — высокая трещиностойкость. При загружении предварительно напряженного элемента внешней нагрузкой в бетоне растянутой зоны погашаются предварительно созданные сжимающие напряжения и только после этого возникают растягивающие напряжения. Чем выше прочность бетона и стали, тем большее предварительное обжатие можно создать в элементе.
Применение высокопрочных материалов позволяет сократить расход арматуры на 30-70% по сравнению с ненапрягаемым железобетоном. Расход бетона и масса конструкции при этом также снижаются. Кроме того, высокая трещиностойкость предварительно напряженных конструкций повышает их жесткость, водонепроницаемость, морозостойкость, сопротивление динамическим нагрузкам, долговечность.
К недостаткам предварительно напряженного железобетона следует отнести то, что процесс составляет значительную трудоемкость изготовления конструкций. Помимо этого создается необходимость в использовании специального оборудования и рабочих высокой квалификации.
Напряженно-деформированные состояния предварительно напряженных элементов после образования трещин в бетоне растянутой зоны сходны с элементами без предварительного напряжения.
Источник
Способы создания предварительного напряжения
Существуют две принципиальные схемы создания предварительного напряжения в железобетонных конструкциях; путем предварительного натяжения арматуры на упоры формы или стенда и натяжения ее на затвердевший бетон (забетонированную конструкцию).
• Натяжение на упоры применяют в конструкциях малых и средних пролетов, изготовляемых в заводских условиях. Арматуру укладывают в форму до бетонирования и после натяжения до заданного значения напряжения закрепляют на упорах.. Затем элемент бетонируют. Когда бетон достигает необходимой передаточной прочности, арматуру освобождают с упоров. Стремясь восстановить свою первоначальную длину, арматура обжимает бетон, поскольку имеет с ним надежное сцепление.
• Натяжение на бетон применяют главным образом для бо-чьшепролетных конструкций (ферм, мостов и т. п.). В этом случае изготовляют бетонный или малоармированный элемент, в котором устраивают каналы или пазы для размещения напрягаемой арматуры. Каналы имеют размеры на 5-15 мм больше диаметра арматуры и создаются путем укладки гофрированных стальных тонкостенных трубок, оставляемых в теле конструкции» иди с помощью каналообразователсй, извлекаемых из свежеуложснного бетона. Затем арматуру натягивают до заданного напряжения и закрепляют на торцах конструкции. В процессе натяжения арматуры происходит обжатие бетона. После этого канал заполняют цементным или цементно-песчаным раствором под давлением (инъецируют). Арматура может располагаться и с внешней стороны элемента (кольцевая арматура трубопроводов, резервуаров). В этом случае после натяжения арматуры поверх ее наносят слой бетона под давлением (торкретбетона).
Натяжение арматуры на упоры производится механическим, электротермическим и электротермомеханическим способами, а на бетон, как правило, механическим способом.
Для натяжения механическим способом применяют гидравлические и винтовые домкраты, намоточные машины и др.
Сущность электротермического способа натяжения арматуры заключается в том, что стержневую или проволочную арматуру, снабженную по концам ограничителями. установленными на определенном расстоянии друг от друга, разогревают током до 300-350 °С, в результате чего она удлиняется. Нагретые стержни укладывают в форму таким образом, чтобы ограничители оказались заведенными за упоры формы. Упоры препятствуют укорочению стержней при остывании, благодаря чему в стержнях возникают заданные растягивающие напряжения. После укладки и твердения бетона арматуру отпускают с упоров и вследствие ее укорочения происходит обжатие бетона конструкции.
Электротермомеханический способ натяжения представляет сочетание электротермического и механического способов.
В последние годы для создания предварительного натяжения в конструкциях начинают успешно применять бетоны на специальных напрягающих цементах (НЦ). Бетон на таком цементе при твердении увеличивается в объеме и вследствие сцепления с арматурой растягивает ее. Так как арматура препятствует свободному расширению бетона, в нем возникают сжимающие напряжения. Такие конструкции называют самонапряженпыми. Применение напрягающего цемента позволяет отказаться от приспособлений для натяжения арматуры.
Напрягаемую арматуру можно располагать в элементе в двух и даже в трех направлениях, тогда создается соответственно двухосное или трехосное предварительное напряжение.
Источник
Способы создания предварительного напряжения
Тема 3.ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ
ПРЕДВАРИТЕЛЬНО НАПРЯЖЕННЫХ КОНСТРУКЦИЙ
Сущность предварительного напряжения
Метод расчета по предельным состояниям является общим и применяется как для обычных, так и для предварительно напряженных железобетонных конструкций. Однако последние обладают рядом особенностей, которые необходимо учитывать в расчетах.
Ранее указывалось, что низкая прочность бетона на растяжение и малая растяжимость являются его существенным недостатком, снижающим строительные качества железобетона. Поскольку предельная растяжимость бетона равна в среднем εbtu= 15·10 -5 , трещины в бетоне могут возникнуть уже при напряжениях в арматуре σs = εsEs=l5·10 -5 ·2·10 5 =30 МПа. С увеличением нагрузки трещины будут увеличиваться. В элементах, армированных сталями классов А-II, A-III, при эксплуатационных нагрузках σs = 270. 340 МПа ширина раскрытия трещин не превышает допустимой (acrc,u ≤ 0,3. 0,4 мм). При применении же высокопрочной арматуры (σs,ser ≥ 500 МПа) ширина раскрытия трещин будет существенно превышать допустимую.
Применение растянутой высокопрочной арматуры оказывается возможным лишь в предварительно напряженных конструкциях, в которых трещины образуются при значительно более высоких нагрузках, а ширина их раскрытия, как правило, не превышает допустимых пределов. При этом полностью используются прочностные свойства этой арматуры.
Впервые высокопрочная арматура была успешно применена в предварительно напряженных железобетонных конструкциях во Франции инж. Фрейссинэ в 1928 г., а в СССР — проф. В.В. Михайловым в 1932 г.
В последние годы применение предварительного напряжения стало одним из основных направлений совершенствования железобетонных конструкций. Оно позволяет:
· существенно уменьшить расход стали за счет использования арматуры высокой прочности;
· повысить трещиностойкость конструкций; увеличить жесткость, уменьшить прогибы;
· повысить выносливость конструкций, работающих под воздействием многократно повторяющихся нагрузок (от кранов, автотранспорта и т.п.);
· увеличить срок службы конструкций при эксплуатации в агрессивных средах;
· уменьшить расход бетона и снизить массу конструкций;
· расширить область применения железобетона, заменив им дефицитные сталь и дерево в таких конструкциях, как напорные трубопроводы, резервуары, шпалы и т. п.
Способы создания предварительного напряжения
Существуют две принципиальные схемы создания предварительного напряжения в железобетонных конструкциях: путем предварительного натяжения арматуры на упоры формы или стенда и натяжения ее на затвердевший бетон (забетонированную конструкцию).
· Натяжение на упоры применяют в конструкциях малых и средних пролетов, изготовляемых в заводских условиях. Арматуру укладывают в форму до бетонирования и после натяжения до заданного значения напряжения закрепляют на упорах (рис. 3.1, а). Затем элемент бетонируют. Когда бетон достигает необходимой передаточной прочности Rbp, арматуру освобождают с упоров. Стремясь восстановить свою первоначальную длину, арматура обжимает бетон, поскольку имеет с ним надежное сцепление (рис. 3.1, б).
Натяжение на бетон применяют главным образом для большепролетных конструкций (ферм, мостов и т. п.). В этом случае изготовляют бетонный или малоармированный элемент, в котором устраивают каналы или пазы для размещения напрягаемой арматуры (рис. 3.1, в). Каналы имеют размеры на 5. 15 мм больше диаметра арматуры и создаются путем укладки гофрированных стальных тонкостенных трубок, оставляемых в теле конструкции, или с помощью каналообразователей, извлекаемых из свежеуложенного бетона. Затем арматуру натягивают до заданного напряжения (рис. 3.1, г) и закрепляют на торцах конструкции. В процессе натяжения арматуры происходит обжатие бетона. После этого канал заполняют цементным или цементно-песчаным раствором под давлением (инъецируют). Арматура может располагаться и с внешней стороны элемента (кольцевая арматура трубопроводов, резервуаров). В этом случае после натяжения арматуры поверх ее наносят слой бетона под давлением (торкрет-бетона).
Рис. 3.1. Схемы создания предварительного напряжения:
1 — форма; 2 — арматура; 3 — упор; 4 — домкрат; 5 — анкер; 6 — канал
Натяжение арматуры на упоры производится механическим, электротермическим и электротермомеханическим способами, а на бетон, как правило, механическим способом.
· Для натяжения механическим способом применяют гидравлические и винтовые домкраты, намоточные машины и др.
· Сущность электротермического способа натяжения арматуры заключается в том, что стержневую или проволочную арматуру, снабженную по концам ограничителями, установленными на определенном расстоянии друг от друга, разогревают током до 300. 350°С, в результате чего она удлиняется. Нагретые стержни укладывают в форму таким образом, чтобы ограничители оказались заведенными за упоры формы. Упоры препятствуют укорочению стержней при остывании, благодаря чему в стержнях возникают заданные растягивающие напряжения. После укладки и твердения бетона арматуру отпускают с упоров и вследствие ее укорочения происходит обжатие бетона конструкции.
· Электротермомеханический способ натяжения представляет сочетание электротермического и механического способов.
· В последние годы для создания предварительного натяжения в конструкциях начинают успешно применять бетоны на специальных напрягающих цементах (НЦ). Бетон на таком цементе при твердении увеличивается в объеме и вследствие сцепления с арматурой растягивает ее. Так как арматура препятствует свободному расширению бетона, в нем возникают сжимающие напряжения. Такие конструкции называют самонапряженными. Применение напрягающего цемента позволяет отказаться от приспособлений для натяжения арматуры.
Напрягаемую арматуру можно располагать в элементе в двух и даже в трех направлениях, тогда создается соответственно двухосное или трехосное предварительное напряжение.
При назначении передаточной прочности Rbp должны быть приняты во внимание два обстоятельства: с одной стороны, желательна более ранняя передача усилия с арматуры на бетон в целях повышения производительности заводов ЖБИ и улучшения использования производственных площадей; с другой стороны, высокий уровень обжатия при низкой передаточной прочности приведет к значительным деформациям ползучести и потерям предварительного напряжения в арматуре. Учитывая эти обстоятельства, нормы рекомендуют назначать передаточную прочность не ниже 11 МПа, а при арматуре классов А-VI, К-7, К-19, В-II, Вр-II — не менее 15,5 МПа. Кроме того, величина Rbp должна быть не менее 50 % от принятого класса бетона.
Источник