- Измерение размеров малых тел методом рядов
- Способы измерения массы тела в физике
- Масса тела в физике
- Чем отличается от веса тела, связь инерции и массы
- Что характеризует, каким прибором измеряют
- Как выражается через плотность и объем, формула
- Примеры решения задач на второй закон Ньютона
- Способ рядов для измерения массы
Измерение размеров малых тел методом рядов
Метод рядов используют для измерения размеров тел в случае, когда эти размеры меньше цены деления измерительного инструмента. Например, невозможно измерить толщину листа бумаги с помощью линейки с миллиметровыми делениями. Однако если измерить толщину пачки L, содержащей достаточно большое число N таких листов, и разделить полученную величину на N, то мы определим среднюю толщину листа в пачке.
При этом максимальная абсолютная погрешность ∆d измерения толщины листа в N раз меньше максимальной абсолютной погрешности ∆L прямого измерения толщины пачки ∆d = , , т. е. в N раз меньше цены деления линейки.
Данным способом можно измерить, например, диаметр тонкой проволоки, крупинок пшена и других малых тел.
1. Увеличивается или уменьшается точность измерения при увеличении числа предметов в ряду?
2. Как изменится максимальная абсолютная погрешность измерения среднего диаметра тела: а) при увеличении числа тел в ряду в 10 раз; б) при уменьшении числа тел в ряду в 2 раза?
· Ознакомьтесь с критериями оценивания лабораторной работы на стр. 2-3 данного файла.
· Определите размер тел методом рядов. Проведённый эксперимент оформите в тетради для лабораторных работ в соответствии с образцом (памяткой).
Источник
Способы измерения массы тела в физике
Масса тела в физике
Масса тела (m) — это скалярная физическая величина, которая является мерой инертности тела и гравитационного взаимодействия.
Масса тела отображает, как оно сопротивляется изменению скорости и как сильно притягивается к Земле. Чем больше масса тела, тем меньше изменяется его скорость при воздействии на него.
В международной системе единиц (СИ) массу измеряют в килограммах.
Масса — это аддитивная (то есть добавочная) величина. Масса совокупности тел или материальных точек равна сумме масс всех отдельный тел.
Масса тела не зависит от движения тела, его расположения и воздействия других тел. Согласно закону сохранения массы, в замкнутой механической системе тел масса неизменна во времени.
Чем отличается от веса тела, связь инерции и массы
Хотя в повседневности понятие «масса» часто путают с понятием «вес», в физике они сильно отличаются.
Вес тела (P) — это сила, с которой тело действует на опору или подвес.
P = m g , где P — вес тела, m — масса тела, g — ускорение свободного падения, равное на Земле 9 , 8 м / с 2 .
Перечислим основные различия массы и веса.
- Масса отражает инертность тела или заряд гравитационного поля. Вес, в свою очередь, отражает силу, с которой тело действует на опору или подвес.
- Масса — скалярная величина, она не имеет направления. Вес — векторная величина.
- Вес определяется не внутренними свойствами объекта, а гравитационными силами. Это означает, что на разных планетах вес тела будет отличаться, а масса останется неизменной. В невесомости масса космонавта будет такой же, как на Земле, а вот вес будет равен нулю.
- Масса тела измеряется в килограммах, а вес — в ньютонах.
Определение 3
Инертность — это свойство тела препятствовать изменению своей скорости при воздействии на него внешних сил.
Инерция — это физическое явление, при котором тело сохраняет свою скорость постоянной или находится в покое, если на него не действуют другие тела или их действие скомпенсировано.
Закон инерции постулируется первым законом Ньютона. Приведем современную формулировку закона.
Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальные точки, когда на них не действуют никакие силы (или действуют силы взаимно уравновешенные), находятся в состоянии покоя или равномерного прямолинейного движения.
Второй закон Ньютона в классической механике вводит массу как проявление инертности тела или материальной точки в определенной системе отсчета.
Согласно современной формулировке, второй закон Ньютона звучит следующим образом.
В инерциальной системе отсчёта ускорение, которое получает материальная точка с постоянной массой, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.
В виде формулы закон выглядит как:
где a → — ускорение материальной точки, F → — равнодействующая сил, приложенных к материальной точке, m — масса материальной точки.
Что характеризует, каким прибором измеряют
Выделяют два вида массы:
- инертная;
- гравитационная.
Определение 5
Инертная масса показывает инертность тел и выражена во втором законе Ньютона.
Гравитационная масса характеризует силу, с которой тело взаимодействует с полями тяготения и какое гравитационное поле создает само. Входит в закон всемирного тяготения.
Согласно экспериментам на Земле, разницы между гравитационной массой и инертной нет, так что их можно считать равными и объединять в общее краткое понятие. Как правило, они также имеют общее обозначение m.
Масса измеряется в килограммах (кг). Для того, чтобы ее измерить, используют специальный прибор – весы.
Весы измеряют массу тела, а не его вес. Но в повседневном сознании эти понятия считают синонимичными.
Если к телу приложена сила с ускорением 1 м / с 2 , а сила при этом равна 1 Н, то масса такого тела равна 1 кг.
В Международном бюро мер и весов находится эталон массы в 1 кг. С 2018 года им является цилиндр диаметром и высотой в 39,17 мм. Цилиндр состоит из сплава, состоящего на 90% из платины и на 10% из иридия.
Как выражается через плотность и объем, формула
Плотность вещества ( ρ ) — это постоянная величина, равная частному от деления массы вещества на его объем. Плотность отображает, чему равна масса вещества в объеме 1 м 3 . Измеряется в к г / м 3 .
ρ = m V , где ρ — плотность вещества, m — масса вещества, V — объем вещества.
Из этой формулы можно вывести формулу массы.
Примеры решения задач на второй закон Ньютона
Второй закон Ньютона описывает взаимосвязь ускорения, равнодействующей всей сил, приложенных к телу, а также массы тела. Это основной закон динамики.
Напомним формулу Второго закона:
Решим несколько задач по этой формуле.
Дано. На движущееся прямолинейно тело массой 36 кг действует сила, равная 54 Н . Вычислите, чему равно ускорение тела.
Решение. Ускорение и сила, действующая на тело, направлены в одну сторону. Соответственно, ускорение и равнодействующую сил можно рассматривать как скалярные величины.
1 H = 1 к г · м / c 2 , отсюда:
a = 54 Н 36 к г = 1 , 5 м / с 2
Ответ. 1 , 5 м / с 2 .
Дано. Тело массой 10 кг, двигаясь равноускоренно без начальной скорости, за 1 мин прошло в горизонтальном направлении путь, равный 27 м. Произведите необходимые расчеты, чтобы определить, чему равна сила, действующая на тело.
Решение. Прежде чем проводить вычисления, необходимо перевести все единицы в единую систему измерений. Возьмем СИ. Масса выражена в кг, путь — в м. Необходимо перевести время в с:
Ускорение можно найти по формуле пути равноускоренного движения:
S = a t 2 2 ⇒ a = 2 S t 2
a = 2 · 27 м ( 60 с ) 2 = 54 м 360 с 2 = 0 , 15 м / с 2
Теперь можно найти силу F:
F = a m = 0 , 15 м / с 2 · 10 к г = 1 , 5 Н .
Источник
Способ рядов для измерения массы
1. Загадки природы и тайны быта
Вот говорят: «Толщиной с человеческий волос». А какова она – толщина волоса? Можно ли её измерить? Или, как говорят физики, оценить, в том случае, если измерения нельзя выполнить с высокой точностью. Или, допустим, можно ли измерить толщину нитки?
2. Другие х – файлы
Возможны и другие задачи. Можно ли обычной линейкой измерить:
а) толщину страницы учебника;
б) диаметр горошины или пшена;
в) толщину тонкой проволоки?
Смотрите об этом презентацию и при затруднениях читайте текст.
Не поискать ли мне тропы иной,
Приёмов новых, сочетаний странных?
«Ну, и причём здесь Шекспир?» — наверное, подумали Вы? Но …
Шекспир справедливо отметил, что когда наши познания и житейский опыт не могут решить наши проблемы, надо искать другие способы решения. Как правило, какой-нибудь метод, да и отыщется!
3. А мне это надо?
А мне это надо? – спросите Вы. Как знать? Допустим, для шитья используются нитки разной толщины. Она указывается номером на катушке. Причём нитки №10 толще, чем нитки №20.
Для изготовления некоторых элементов электрической цепи необходимо знать толщину проволоки. Для печати книг, газет и журналов используется бумага разной толщины.
А ещё надо просто научиться решать практические задачи, чтобы получать хорошие отметки и сдать экзамен по физике.
4. Истина где-то рядом
Прямые измерения размеров малых или тонких тел невозможны по той причине, что измеряемые величины соизмеримы или даже меньше цены деления используемого прибора. Одним из способов измерения размеров малых тел является, так называемый, метод рядов. Этот метод основан на принципе суммирования длин (масс, объёмов) одинаковых элементов, образующих тело в целом.
Высота стопки одинаковых книг равна сумме высот отдельных книг в этой стопке: h = n · h₀
Толщина (высота) одной книги, в этом случае, равна: h₀ = h : n
Где: n – кол-во книг; h₀ — высота одной книги.
Задача 1. Определить диаметр шарика (бусины).
Обозначим диаметр буквой d . Это и будет размером малого тела, то есть его наибольшей шириной.
Сложность этой задачи заключается в размерах тел, которые такого же порядка, как и цена деления линейки. Диаметр шариков составляет несколько миллиметров и цена деления 1 мм. Это значит, что погрешность такого измерения очень большая. В этом случае лучше применить не прямое измерение диаметра шарика, а косвенное, с использованием метода рядов.
В ряд укладываем несколько шариков. Измеряем длину ряда линейкой и делим её на количество шариков в ряду. Точность косвенных измерений диаметра шарика при таком способе будет значительно выше, чем при прямом измерении линейкой.
Длина ряда: l = 5 см = 50 мм Количество шариков в ряду: n = 7
Диаметр шарика: d = 50 мм: 7 = 7, 1428… мм ≈ 7, 14 мм = 7, 14 · 10 -3 м
Задача 2. Найти диаметр бусины на нитке.
В этом случае задача упрощается. Достаточно плотно сдвинуть некоторое количество бусин на нитке. Расположить этот участок нити вдоль линейки. А затем выполнить прямые и косвенные измерения.
Длина участка нити: l = 6 см = 60 мм Количество бусин: n = 10
Диаметр бусины: d = 60 мм : 10 = 6 мм = 6,0 · 10 -3 м
Задача 3. Определить диаметр тонкой проволоки.
Для решения этой задачи достаточно взять карандаш и намотать на него некоторое количество витков проволоки. Дальнейшие измерения и вычисления аналогичны.
Длина ряда из витков: l = 2 см = 20 мм Количество витков: n = 10
Диаметр (толщина) проволоки: d = 20 мм : 10 = 2 мм = 2 · 10 -3 м
Оформление результатов
Результаты измерений лучше представлять в виде таблицы. Это удобно для косвенных измерений. А также в случае проведения однотипных измерений для разных тел.
Обычно (если нет особых указаний) практические задачи выполняются с точностью до двух значащих цифр после запятой: 7,1428… мм ≈ 7,14 мм .
Результаты измерений могут быть и такого вида: 6,00 мм. Такой вид записи показывает, что вычисления также выполнены с точностью до сотых. А число либо разделилось без остатка, и дольных значений нет, либо остаток меньшего порядка (тысячные, десятитысячные и т.д.).
Окончательная запись результатов в системе СИ:
d₁ = 7,14 · 10 -3 м; d₂ = 6,00 · 10 -3 м
С учётом погрешности:
d₁ = (7,14 ± 0,07)· 10 -3 м; d₂ = (6,00 ± 0,05) · 10 -3 м.
Погрешность измерений будет уже не 0,5 мм, а в 7 (0,07 мм) и 10 (0,05 мм) раз меньше. И чем больше малых элементов в ряду, тем меньше погрешность измерений.
5. Территория экспериментов
Теперь можно решать практические задачи. В отличие от лабораторных работ, практические задачи не содержат указаний и бланк отчёта необходимо приготовить самому учащемуся. Примеры практических задач:
1. Определить толщину листа учебника физики.
2. Определить толщину нитки в катушке.
3. Определить объём одной капли воды.
Для оформления отчёта одной таблицы мало, надо знать Как составить отчёт по практической работе.
В презентации к уроку есть пример решения задачи и задание для рефлексии.
А если у Вас остались ещё вопросы – спрашивайте на форуме или на странице FQ. Или пишите на электронную почту.
Источник